..'Ii

AS/400 Advanced Series

ILE Concepts

Version 3

SC41-4606-00

AS/400 Advanced Series

ILE Concepts

Version 3

<|I|i

SC41-4606-00

— Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First Edition (September 1995)

This edition applies to the licensed program IBM Operating System/400 (Program 5716-SS1), Version 3 Release 6 Modification 0,
and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the proper
edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto
Rico, or Guam, you can order publications through the IBM Software Manufacturing Company at 800+879-2755. Publications are not
stocked at the address given below.

A form for reader comments is provided at the back of this publication. If the form has been removed, you can mail your comments
to:

Attn Department 542

IDCLERK

IBM Corporation

3605 Highway 52 N

Rochester, MN 55901-9986 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you or restricting your use of it.

© Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices vii
Programming Interface Information vii
Trademarks and Service Marks vii
About ILE Concepts, SC41-4606 ix
Who Should Use This Book ix
Chapter 1. Integrated Language Environment Introduction 1-1
What Is ILE? 1-1
What Are the Benefits of ILE? 1-1
Binding 1-1
Modularity 1-1
Reusable Components 1-2
Common Run-Time Services 1-2
Coexistence with Existing Applications 1-3
Source Debugger 1-3
Better Control over Resources 1-3
Better Control over Language Interactions 1-4
Better Code Optimization 1-6
Better EnvironmentforC 1-6
Foundation for the Future 1-6
What Is the History of ILE? 1-6
Original Program Model Description 1-7
Extended Program Model Description 1-8
Integrated Language Environment Description 1-10
Chapter 2. ILE Basic Concepts 2-1
Structure of an ILE Program 2-1
Procedure 2-2
Module Object 2-2
ILE Program 2-3
Service Program 2-5
Binding Directory 2-7
Binder Functions 2-8
Calls to Programs and Procedures 2-10
Dynamic Program Calls, ... 2-10
Static Procedure Calls, 2-10
Activation 2-12
ErrorHandling 2-13
Optimizing Translator 2-14
Debugger 2-15
Chapter 3. ILE Advanced Concepts 3-1
Program Activation 3-1
Program Activation Creation 3-2
Activation Group 3-3
Activation Group Creation 3-4
Default Activation Groups 3-5
ILE Activation Group Deletion 3-6
Service Program Activation 3-8

© Copyright IBM Corp. 1995 il

Control Boundaries
Control Boundaries for ILE Activation Groups
Control Boundaries for the OPM Default Activation Group
Control Boundary Use

Error Handling
Job Message Queues
Exception Messages and How They Are Sent
How Exception Messages Are Handled
Exception Recovery
Default Actions for Unhandled Exceptions
Types of Exception Handlers
ILE Conditions

Data ' Management Scoping Rules
Call-Level Scoping
Activation-Group-Level Scopingo
Job-Level Scoping

Chapter 4. Program Creation Concepts
Create Program and Create Service Program Commands
Symbol Resolution
Resolved and Unresolved Imports
Binding by Copy
Binding by Reference
Importance of the Order of Exports
Program Access
Entry Module Parameter on the CRTPGM Command
Export Parameter on the CRTSRVPGM Command
Binder Language
Signature
Start Program Export and End Program Export Commands
Export Symbol Command
Binder Language Examples Lo
Program Updates
Important Parameters on the UPDPGM and UPDSRVPGM Commands
Module Replaced by a Module with Fewer Imports
Module Replaced by a Module with More Imports
Module Replaced by a Module with Fewer Exports
Module Replaced by a Module with More Exports
Tips for Creating Modules, Programs, and Service Programs

Chapter 5. Activation Group Management
Multiple Applications Running in the Same Job
Reclaim Resources Command
Reclaim Resources Command for OPM Programs
Reclaim Resources Command for ILE Programs
Reclaim Activation Group Command
Service Programs and Activation Groups

Chapter 6. Calls to Procedures and Programs
Call Stack e
Call Stack Example
Calls to Programs and Calls to Procedures
Static Procedure Calls
Procedure Pointer Calls

iV AS/400 ILE Concepts V3R6

Passing Arguments to ILE Procedures 6-3

Dynamic Program Calls 6-5
Passing Arguments on a Dynamic Program Call 6-6
Interlanguage Data Compatibility 6-6
Syntax for Passing Arguments in Mixed-Language Applications 6-6
Operational Descriptors 6-6
Support for OPM and ILE APIs 6-8
Chapter 7. Storage Management 7-1
Dynamic Storage 7-1
Heap Characteristics 7-1
Default Heap 7-2
User-Created Heaps 7-2
ILE C/400 Heap Support 7-3
Heap Allocation Strategy 7-4
Storage Management Bindable APIs 7-4
Chapter 8. Exception and Condition Management 8-1
Handle Cursors and Resume Cursors 8-1
Exception Handler Actions 8-2
How to Resume Processing 8-3
How to Percolate a Message 8-3
How to Promote aMessage 8-4
Default Actions for Unhandled Exceptions e 8-4
Nested Exceptions 8-5
Condition Handling 8-5
How Conditions Are Represented 8-6
Condition Token Testing, 8-8
Relationship of ILE Conditions to OS/400 Messages 8-8
0S/400 Messages and the Bindable API Feedback Code 8-9
Chapter 9. Debugging Considerations 9-1
Debug Mode 9-1
Addition of Programs to Debug Mode L. 9-1
How Observability and Optimization Affect Debugging 9-1
Observability 9-2
Optimization Levels 9-2
Debug Data Creation and Removal 9-2
Module Views 9-2
Debugging across Jobs 9-3
Unmonitored Exceptions 9-3
National Language Support Restriction for Debugging 9-3
Chapter 10. Data Management Scoping 10-1
Common Data Management Resources, 10-1
Commitment Control Scoping 10-2
Chapter 11. ILE Bindable Application Programming Interfaces 11-1
ILE Bindable APIs Availableo o 11-1
Dynamic Screen Manager Bindable APIs 11-4
Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or
UPDSRVPGM Command A-1
Binder Listing A-1

Contents V

Vi

Basic Listing A-1

Extended Listing A-3
Full Listing A-5
Listing for Example Service Program A-7
Binder Language Errorso A-9
Signature Padded A-10
Signature Truncated A-11
Current Export Block Limits Interface A-12
Duplicate Export Block A-13
Duplicate Symbol on Previous Export A-14
Level Checking Cannot Be Disabled More than Once, Ignored A-15
Multiple Current Export Blocks Not Allowed, Previous Assumed A-16
Current Export Block Is Empty A-17
Export Block Not Completed, End-of-File Found before ENDPGMEXP . . A-18
Export Block Not Started, STRPGMEXP Required A-19
Export Blocks Cannot Be Nested, ENDPGMEXP Missing A-20
Exports Must Exist inside Export Blocks A-21
Identical Signatures for Dissimilar Export Blocks, Must Change Exports . A-22
Multiple Wildcard Matches L A-23
No Current Export Block A-24
No Wildcard Matches A-25
Previous Export Block Is Empty o oo A-26
Signature Contains Variant Characters A-27
SIGNATURE(*GEN) Required with LVLCHK(*NO) A-28
Signature Syntax Not Valid A-29
Symbol Name Required A-30
Symbol Not Allowed as Service Program Export A-31
Symbol Not Defined A-32
Syntax Not Valid A-33
Appendix B. Optimization Erfois B-1
Appendix C. CL Commands Used with ILE Objects C-1
CL Commands Used with Modules C-1
CL Commands Used with Program Objects C-1
CL Commands Used with Service Programs C-1
CL Commands Used with Binding Directories C-1
CL Command Used with Structured Query Language C-2
CL Commands Used with Source Debugger C-2
CL Commands Used to Edit the Binder Language Source File C-2
Glossary G-1
Bibliography H-1
Index X-1

AS/400 ILE Concepts V3R6

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any of the intellectual prop-
erty rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM, are
the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The fur-
nishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thormnwood, NY
10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact the software interop-
erability coordinator. Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Address your questions to:

IBM Corporation

Software Interoperability Coordinator
3605 Highway 52 N

Rochester, MN 55901-9986 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This
publication may also refer to products that have not been announced in your country. 1BM makes no
commitment to make available any unannounced products referred to herein. The final decision to
announce any product is based on IBM's business and technical judgment.

Changes or additions to the text are indicated by a vertical line (l) to the left of the change or addition.

This publication contains small programs that are furnished by IBM as simple examples to provide an
illustration. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. All programs contained herein
are provided to you "AS 1S." THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

If you are viewing this manual from a compact disk (CD-ROM), the photographs and color illustrations do
not appear.

Programming Interface Information

This manual is intended to help you with application programming. It contains general-use programming
interfaces that allow you to write programs that use the Integrated Language Environment services in the
0S/400 operating system.

© Copyright IBM Corp. 1995 vii

Trademarks and Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation
in the United States or other countries or both:

Application System/400 Operating System/400

AS/400 0S/2

C/400 08S/400

COBOL/400 RPG IV

DB2/400 SAA

IBM Systems Application Architecture
ILE 400

Integrated Language Environment
Language Environment

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be
trademarks or service marks of others.

Vill AS/400 ILE Concepts V3R6

About ILE Concepts, SC41-4606

This book describes concepts and terminology pertaining to the Integrated Lan-
guage Environment (ILE) architecture of the OS/400 licensed program. Topics
covered include module creation, binding, the running and debugging of programs,
and exception handling.

The concepts described in this book pertain to all ILE languages. Each ILE lan-
guage may implement the ILE architecture somewhat differently. To determine
exactly how each language enables the concepts described here, refer to the
programmer’s guide for that specific ILE language.

This book also describes 0S/400 functions that directly pertain to all ILE languages.
In particular, common information on binding, message handling, and debugging
are explained.

This book does not describe migration from an existing AS/400 language to an ILE
language. That information is contained in each ILE high-level language (HLL)
programmer’s guide.

Who Should Use This Book

© Copyright IBM Corp. 1995

You should read this book if:
* You are a software vendor developing applications or software tools

* You are experienced in developing mixed-language applications on the AS/400
system

* You are not familiar with the AS/400 system but have application programming
experience on other systems

* Your programs share common procedures, and when you update or enhance
those procedures, you have to re-create the programs that use them

If you are an AS/400 application programmer who writes primarily in one language,
you should read the first four chapters of this book for a general understanding of
ILE and its benefits. The programmer’s guide for that ILE language can then be
sufficient for application development.

ix

X AS/400 ILE Concepts V3R6

Chapter 1. Integrated Language Environment Introduction

This chapter defines the Integrated Language Environment™ (ILE*) model, describes
the benefits of ILE, and explains how ILE evolved from previous program models.

Wherever possible, information is presented from the perspective of an RPG or
COBOL programmer and is described in terms of existing AS/400* features.

What Is ILE?

ILE is a new set of tools and associated system support designed to enhance
program development on the AS/400 system.

The capabilities of this new model can be exploited only by programs produced by
the new ILE family of compilers. That family includes ILE RPG/400%, ILE
COBOL/400*%, ILE C/400*, and ILE CL.

What Are the Benefits of ILE?

Binding

Modularity

ILE offers numerous benefits over previous program models. Those benefits
include binding, modularity, reusable components, common run-time services, coex-
istence, and a source debugger. They also include better control over resources,
better control over language interactions, better code optimization, a better environ-
ment for C, and a foundation for the future.

The benefit of binding is that it helps reduce the overhead associated with calling
programs. Binding the modules together speeds up the call. The previous call
mechanism is still available, but there is also a faster alternative. To differentiate
between the two types of calls, the previous method is referred to as a dynamic or
external program call, and the ILE method is referred to as a static or bound proce-
dure call.

The binding capability, together with the resulting improvement in call performance,
makes it far more practical to develop applications in a highly modular fashion. An
ILE compiler does not produce a program that can be run. Rather, it produces a
module object (*MODULE) that can be combined (bound) with other modules to
form a single runnable unit; that is, a program object (*PGM).

Just as you can call an RPG program from a COBOL program, ILE allows you to
bind modules written in different languages. Therefore, it is possible to create a
single runnable program that consists of modules written separately in RPG,
COBOL, C, and CL.

The benefits from using a modular approach to application programming include the
following:

¢ Faster compile time

The smaller the piece of code we compile, the faster the compiler can process
it. This benefit is particularly important during maintenance, because often only

© Copyright IBM Corp. 1995 11

a line or two needs to be changed. When we change two lines, we may have
to recompile 2000 lines. That is hardly an efficient use of resources.

If we modularize the code and take advantage of the binding capabilities of ILE,
we may need to recompile only 100 or 200 lines. Even with the binding step
included, this process is considerably faster.

e Simplified maintenance

When updating a very large program, it is very difficult to understand exactly
what is going on. This is particularly true if the original programmer wrote in a
different style from your own. A smaller piece of code tends to represent a
single function, and it is far easier to grasp its inner workings. Therefore, the
logical flow becomes more obvious, and when you make changes, you are far
less likely to introduce unwanted side effects.

¢ Simplified testing

Smaller compilation units encourage you to test functions in isolation. This iso-
lation helps to ensure that test coverage is complete; that is, that all possible
inputs and logic paths are tested.

» Better use of programming resources

Modularity lends itself to greater division of labor. When you write large pro-
grams, it is difficult (if not impossible) to subdivide the work. Coding all parts of
a program may stretch the talents of a junior programmer or waste the skills of
a senior programmer.

» Easier migrating of code from other platforms

Programs written on other platforms, such as UNIX**, are often modular.
Those modules can be migrated to the AS/400 system and incorporated into an
ILE program.

Reusable Components
ILE allows you to select packages of routines that can be blended into your own
programs. Routines written in any ILE language can be used by all AS/400 ILE
compiler users. The fact that programmers can write in the language of their
choice ensures you the widest possible selection of routines.

The same mechanisms that IBM and other vendors use to deliver these packages
to you are available for you to use in your own applications. Your installation can
develop its own set of standard routines, and do so in any language it chooses.

Not only can you use off-the-shelf routines in your own applications. You can also
develop routines in the ILE language of your choice and market them to users of
any ILE language.

Common Run-Time Services

A selection of off-the-shelf components (bindable APIs) is supplied as part of ILE,
ready to be incorporated into your applications. These APls provide services such
as:

Date and time manipulation
Message handling

Math routines

Greater control over screen handling

1-2 AS/400 ILE Concepts V3R6

Dynamic storage allocation

Over time, additional routines will be added to this set and others will be available
from third-party vendors.

For further details of the APIs supplied with ILE, see the System API Reference.

Coexistence with Existing Applications
ILE programs can coexist with existing OPM programs. ILE programs can call
OPM programs and other ILE programs. Similarly, OPM programs can call ILE
programs and other OPM programs. Therefore, with careful planning, it is possible
to make a gradual transition to ILE.

Source Debugger
The source debugger allows you to debug ILE programs and service programs.
For information about the source debugger, see Chapter 9, “Debugging
Considerations” on page 9-1.

Better Control over Resources

Before the introduction of ILE, resources (for example, open files) used by a
program could be scoped to (that is, owned by) only:

The program that allocated the resources
The job

In many cases, this restriction forces the application designer to make tradeoffs.

ILE offers a third alternative. A portion of the job can own the resource. This
alternative is achieved through the use of an ILE construct, the activation group.
Under ILE, a resource can be scoped to any of the following:

A program
An activation group
The job

Shared Open Data Path—Scenario
Shared open data paths (ODPs) are an example of resources you can better
control with ILE’s new level of scoping.

To improve the performance of an application on the AS/400, a programmer
decided to use a shared ODP for the customer master file. That file is used by
both the Order Entry and the Billing applications.

Because a shared ODP is scoped to the job, it is quite possible for one of the
applications to inadvertently cause problems for the other. In fact, avoiding such
problems requires careful coordination among the developers of the applications. If
the applications were purchased from different suppliers, avoiding problems may
not even be possible.

What kind of problems can arise? Consider the following scenario:

1. The customer master file is keyed on account number and contains records for
account numbers A1, A2, B1, C1, C2, D1, D2, and so on.

Chapter 1. Integrated Language Environment Introduction 1-3

2. An operator is reviewing the master file records, updating each as required,
before requesting the next record. The record currently displayed is for
account B1.

3. The telephone rings. Customer D1 wants to place an order.

4. The operator presses the Go to Order Entry function key, processes the order
for customer D1, and returns to the master file display.

5. The program still correctly displays the record for B1, but when the operator
requests the next record, which record is displayed?

If you said D2, you are correct. When the Order Entry application read record
D1, the current file position changed because the shared ODP was scoped to

the job. Therefore, the request for the next record means the next record after
D1.

Under ILE, this problem could be prevented by running the master file maintenance
in an activation group dedicated to Billing. Likewise, the Order Entry application
would run in its own activation group. Each application would still gain the benefits
of a shared ODP, but each would have its own shared ODP, owned by the relevant
activation group. This level of scoping prevents the kind of interference described
in this example.
Scoping resources to an ac
develop an application that runs independently from any other applications running
in the job. It also reduces the coordination effort required and enhances the ability
to write drop-in extensions to existing application packages.

WS programmers

Commitment Control—Scenario
The ability to scope a shared open data path (ODP) to the application is useful in
the area of commitment control.

Assume that you want to use a file under commitment control but that you also
need it to use a shared ODP. Without ILE, if one program opens the file under
commitment control, all programs in the job have to do so. This is true even if the
commitment capability is needed for only one or two programs.

One potential problem with this situation is that, if any program in the job issues a
commit operation, all updates are committed. The updates are committed even if
logically they are not part of the application in question.

These problems can be avoided by running each part of the application that
requires commitment control in a separate activation group.

Better Control over Language Interactions

Without ILE, the way a program runs on the AS/400 depends on a combination of
the following:

The language standard (for example, the ANSI standards for COBOL and C)
The developer of the compiler

This combination can cause problems when you mix languages.

1-4 AS/400 ILE Concepts V3R6

Mixed Languages—Scenario
Without activation groups, which are introduced by ILE, interactions among OPM
languages are difficult to predict. ILE activation groups can solve that difficulty.

For example, consider the problems caused by mixing COBOL with other lan-
guages. The COBOL language standard includes a concept known as a run unit.
A run unit groups programs together so that under certain circumstances they
behave as a single entity. This can be a very useful feature.

Assume that three ILE COBOL/400 programs (PRGA, PRGB, and PRGC) form a
small application in which PRGA calls PRGB, which in turn calls PRGC (see
Figure 1-1). Under the rules of ILE COBOL/400, these three programs are in the
same run unit. As a result, if any of them ends, all three programs should be
ended and control should return to the caller of PRGA.

--ILE COBOL/400 Run Unit----------+ X

i PRGA PRGB —» PRGC E

\

RV3W027-1

Figure 1-1. Three ILE COBOL/400 Programs in a Run Unit

Suppose that we now introduce an RPG program (RPG1) into the application and
that RPG1 is also called by the COBOL program PRGB (see Figure 1-2). An RPG
program expects that its variables, files, and other resources remain intact until the
program returns with the last-record (LR) indicator on.

ILE COBOL/400 Run Unit:---------~ .

PRGA » PRGB [—» PRGC

RV3W028-1

Figure 1-2. Three ILE COBOL/400 Programs and One ILE RPG/400 Program in a Run
Unit

However, the fact that program RPG1 is written in RPG does not guarantee that all
RPG semantics apply when RPG1 is run as part of the COBOL run unit. |If the run
unit ends, RPG1 disappears regardless of its LR indicator setting. In many cases,
this situation may be exactly what you want. However, if RPG1 is a utility program,
perhaps controlling the issue of invoice numbers, this situation is unacceptable.

We can prevent this situation by running the RPG program in a separate activation
group from the COBOL run unit (see Figure 1-3 on page 1-6). An ILE COBOL/400
run unit itself is an activation group.

Chapter 1. Integrated Language Environment Introduction 1-5

,— Activation Group-——~

PRGA

A
-
oY)
(@]
vs]
\ 4
0
ny)
o
O

RPG1

v

!
|
|
|
1
|
|
|
I

RV3W029-1

Figure 1-3. ILE RPG/400 Program in a Separate Activation Group

For information about the differences between an OPM run unit an ILE run unit, see
the ILE COBOL/400 Programmer's Guide.

Better Code Optimization

The ILE translator does many more types of optimization than the original program
model (OPM) translator does. Although each compiler does some optimization, the
majority of the optimization on the AS/400 is done by the translator.

An ILE-enabled compiler does not directly produce a module. First it produces an
intermediate form of the module, and then it calls the ILE translator to translate the
intermediate code into instructions that can be run.

Better Environment for C

C has become the language of choice for tool builders. Because of this, a better C
language means that more and more of the latest application development tools are
migrated to the AS/400. For you, this means a greater choice of:

CASE tools

Fourth-generation languages (4GLs)
Additional programming languages
Editors

Debuggers

Foundation for the Future

The benefits and functions that ILE provides will be even more important in the
future. Future ILE compilers will offer significant enhancements. As we move into
object-oriented programming languages and visual programming tools, the need for
ILE becomes even more apparent.

Increasingly, programming methods rely on a highly modularized approach. Appli-
cations are built by combining thousands of small reusable components to form the
completed application. If these components cannot transfer control among them-
selves quickly, the resulting application cannot work.

What Is the History of ILE?

ILE is a stage in the evolution of OS/400* program models. Each stage evolved to
meet the changing needs of application programmers.

The programming environment provided when the AS/400 system was first intro-
duced is called the original program model (OPM). In Version 1 Release 2, the
Extended Program Model (EPM) was introduced.

1-6 AS/400 ILE Concepts V3R6

Original Program Model Description
Application developers on the AS/400 enter source code into a source file and
compile that source. If the compilation is a success, a program object is created.
The set of functions, processes, and rules provided by the OS/400 to create and
run a program is known as the original program model (OPM).

As an OPM compiler generates the program object, it generates additional code.
The additional code initializes program variables and provides any necessary code
for special processing that is needed by the particular language. The special proc-
essing could include processing any input parameters expected by this program.
When a program is to start running, the additional compiler-generated code
becomes the starting point (entry point) for the program.

A program is typically activated when the OS/400 encounters a call request. At run
time, the call to another program is a dynamic program call. The resources
needed for a dynamic program call can be significant. Application developers often
design an application to consist of a few large programs that minimize the number
of dynamic program calls.

Figure 1-4 illustrates the relationship between OPM and the operating system. As
you can see, RPG, COBOL, CL, BASIC, and PL/I all operate in this model.

The broken line forming the OPM boundary indicates that OPM is an integral part
of OS/400. This integration means that many functions normally provided by the
compiler writer are built into the operating system. The resulting standardization of
calling conventions allows programs written in one language to freely call those
written in another. For exampie, an application written in RPG typically inciudes a
number of CL programs to issue file overrides, to perform string manipulations, or
to send messages.

0S/400

~Original Program Model —-
(OPM) |

RPG BASIC

|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|

RV2W976-2

Figure 1-4. Relationship of OPM to OS/400

Chapter 1. Integrated Language Environment Introduction 1-7

Principal Characteristics of OPM
The following list identifies the principal characteristics of OPM:

¢ Good for traditional RPG and COBOL programs

OPM is ideal for supporting traditional RPG and COBOL programs, that is, rela-
tively large, multifunction programs.

¢ Dynamic binding

When program A wants to call program B, it just does so. This dynamic
program call is a simple and powerful capability. At run time, the operating
system locates program B and ensures that the user has the right to use it.

As previously noted, however, a dynamic program call requires considerable
resources. There also can be other drawbacks. When a program is called,
0S/400 checks to see if the program is activated. If it is, that copy of the
program is given control. This capability can be very useful, but it is not always
what you want. Sometimes you would like a new copy of the program’s vari-
ables, reset to their initial states, while keeping the original copy in its current
state.

In RPG or COBOL, achieving this situation can be a laborious process. It
involves additional coding or sometimes duplicating the program object itself.

o Limited data sharin

«Q

OPM provides limited support for data sharing. Typically, to share data
between programs in an application, you pass the data as parameters on a
CALL statement. This method is normally quite effective, except in those cases
where the data is not processed by the next program in sequence.

For example, suppose that program A originates a piece of data that is to be
processed by program D. If the normal sequence of events is for A to call B,
which calls C, which calls D, the parameter has to be passed from program to
program, even though neither B nor C uses it.

Under OPM, system support for other types of data sharing was limited. There-
fore, the RPG and COBOL compiler writers decided not to include such
support. As a result, OPM programmers have to use alternative techniques.
These techniques include storing the data in a local data area (LDA), in a data-
base, or in a user space.

Extended Program Model Description

OPM continues to serve a useful purpose. However, OPM does not provide direct
support for procedures as defined in languages like C. A procedure is a set of
self-contained high-level language (HLL) statements that performs a particular task
and then returns to the caller. Individual languages vary in the way that a proce-
dure is defined. In C, a procedure is called a function.

To allow languages that define procedure calls between compilation units or that
define procedures with local variables to run on an AS/400, OPM was enhanced.
These enhancements are called the Extended Program Model (EPM). As shown
in Figure 1-5 on page 1-9, EPM was created to support languages like Pascal and
FORTRAN. Along with the base OPM support, EPM provides the ability to call
procedures located in other programs. Because EPM uses the functions of OPM,
some procedure calls in EPM turn into dynamic calls to the program containing the
procedure. Conceptually, the entry point of the called EPM program provides the
following functions:

1-8 AS/400 ILE Concepts V3R6

Initializes the program variables
Calls the identified procedure

The system support to help resolve the procedure calls to the appropriate programs
is provided by the Set Program Information (SETPGMINF) command.

Although EPM is a different programming model from OPM, it is closely tied to
OPM. EPM is built as an additional layer above the AS/400 high-level machine
interface. Most of the functions associated with OPM also apply to EPM.

In the following chapters of this manual, the term OPM means both OPM and EPM.
Functions that apply only to EPM are specifically qualified with the term EPM.

0S/400
Extended Program —

~Original Program Model - - ¢ Model (EPM)
| (OPM) |
| |
! |
| | RPG BASIC | | Pascal
' |
' |
| |

PLA | !
1 I FORTRAN
| |
! |
l |
! |
| |

RV3W103-0

Figure 1-5. Relationship of OPM and EPM to OS/400

The shaded area around the EPM block indicates that, unlike OPM, EPM is not
incorporated into OS/400. Rather, it is a layer on top of the operating system. It
provides the additional support required for procedure-based languages.

Principal Characteristics of Procedure-Based Languages
Procedure-based languages have the following characteristics:

¢ Locally scoped variables

Locally scoped variables are known only within the procedure that defines
them. The equivalent of locally scoped variables is the ability to define two
variables with the same name that refer to two separate pieces of data. For
example, the variable COUNT might have a length of 4 digits in subroutine
CALCYR and a length of 6 digits in subroutine CALCDAY.

Locally scoped variables provide considerable benefit when you write subrou-
tines that are intended to be copied into several different programs. Today, to
avoid potential naming conflicts, many programmers use a scheme for naming
variables based on the name of the subroutine.

e Automatic variables

Automatic variables are created whenever a procedure is entered. Automatic
variables are destroyed when the procedure is exited.

Chapter 1. Integrated Language Environment Introduction ~ 1-9

+ External variables

External data is one way of sharing data between programs. If program A
declares a data item as external, program A is said to export that data item to
other programs that want to share that data. Program D can then import the
item without programs B and C being involved at all. For more information
about imports and exports, see “Module Object” on page 2-2.

o Multiple entry points

COBOL and RPG programs have only a single entry point. In a COBOL
program, it is the start of the PROCEDURE DIVISION. In an RPG program, it
is the first-page (1P) output. This is the model that OPM supports.

Procedure-based languages, on the other hand, may have multiple entry points.
For example, a C program may consist entirely of subroutines to be used by
other programs. These procedures can be exported, along with relevant data if
required, for other programs to import.

In ILE, programs of this type are known as service programs. They can
include modules from any of the ILE languages. Service programs are similar

in concept to dynamic link libraries (DLLs) in Windows** or OS/2*. Service pro-
grams are discussed in greater detail in “Service Program” on page 2-5.

¢ Frequent calls

Procedure-based languages are by nature very call intensive. Although EPM
provides some functions to minimize the overhead of calls, procedure calls
between separately compiled units still have a relatively high overhead. ILE
improves this type of call significantly.

Integrated Language Environment Description

As Figure 1-6 shows, ILE is tightly integrated into OS/400, just as OPM is. It pro-
vides the same type of support for procedure-based languages that EPM does, but
it does so far more thoroughly and consistently. lts design provides for the more
traditional languages, such as RPG and COBOL, and for future language develop-
ments.

0S/400

— Original Program Model -
(OPM)

fExtended Program— I—Inte_grated Language - -
¢ \Model (EPM) i Environment (ILE)

RPG BASIC
Pascal
CL PL/I
FORTRAN

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|

RV3W026-1

Figure 1-6. Relationship of OPM, EPM, and ILE to OS/400

AS/400 ILE Concepts V3R6

Chapter 2. ILE Basic Concepts

Table 2-1 compares and contrasts the original program model (OPM) and the Inte-
grated Language Environment (ILE) model. This chapter briefly explains the simi-
larities and differences listed in the table.

Table 2-1. Similarities and Differences between OPM and ILE

OPM ILE
Program Program
Service program
Compilation results in a runnable program Compilation results in a nonrunnable
module object
Compile, run Compile, bind, run
Run units simulated for each language Activation groups
Dynamic program call Dynamic program call
Static procedure call
Single-language focus Mixed-language focus
Language-specific error handling Common error handling

Language-specific error handling

OPM debuggers Source-level debugger
OPM debuggers

Structure of an

© Copyright IBM Corp. 1995

ILE Program

An ILE program contains one or more modules. A module, in turn, contains one or
more procedures (see Figure 2-1).

r Program A

—Module M1 —

RPG

—Module M2—

Procedure P1

Procedure P2

RV2W1003-2

Figure 2-1. Structure of an ILE Program

2-1

Procedure

A procedure is a set of self-contained high-level language statements that per-
forms a particular task and then returns to the caller. For example, an ILE C/400

function is an ILE procedure.

Module Object

A module object is a nonrunnable object that is the output of an ILE compiler. A
module object is represented to the system by the symbol “MODULE. A module
object is the basic building block for creating runnable ILE objects. This is a signif-
icant difference between ILE and OPM. The output of an OPM compiler is a

runnable program.

A module object can consist of one or more procedures and data item specifica-
tions. It is possible to directly access the procedures or data items in one module
from another ILE object. See the ILE HLL programmer’s guides for details on

b a thnt mmnin lhn AlivAanth, A~nA~ncoAn I

coding the procedures and data items that can be directly accessed by other
objects.
ILE RPG/400, ILE COBOL/400, and ILE C/400 all have the following common con-
cepts:

e Exports

An export is the name of a procedure or data item, coded in a module object,
that is available for use by other ILE objects. The export is identified by its
name and its associated type, either procedure or data.

An export can also be called a definition.
e Imports

An import is the use of or reference to the name of a procedure or data item
not defined in the current module object. The import is identified by its name
and its associated type, either procedure or data.

An import can also be called a reference.

A module object is the basic building block of an ILE runnable object. Therefore,
when a module object is created, the following may also be generated:

e Debug data

Debug data is the data necessary for debugging a running ILE object. This
data is optional.

e Program entry procedure (PEP)

A program entry procedure is the compiler-generated code that is the entry
point for an ILE program on a dynamic program call. It is similar to the code
provided for the entry point in an OPM program.

¢ User entry procedure (UEP)

A user entry procedure, written by a programmer, is the target of the dynamic
program call. It is the procedure that gets control from the PEP. The main()
function of a C program becomes the UEP of that program in ILE.

2-2 AS/400 ILE Concepts V3R6

Figure 2-2 on page 2-3 shows a conceptual view of a module object. In this
example, module object M1 exports two procedures (Draw_Line and Draw_Arc)
and a data item (rtn_code). Module object M1 imports a procedure called
Draw_Plot. This particular module object has a PEP, a corresponding UEP (the
procedure Draw_Arc), and debug data.

— Module M1
Program Entry Procedure (PEP) Characteristics of a *MODULE obiject:

User Entry Procedure (UEP): A *MODULE objec?t is the output
Draw_Arc from an ILE compiler.

¢ |t is the basic building block for ILE
runnable objects.

Procedure Draw_Line;
Dcl rtin_code EXTRN;

CallPrc Draw_Plot;

¢ |t is not a runnable object.
* It may have a PEP defined.

End Draw_Line; « If a PEP is defined, a UEP is also

defined.
Procedure Draw_Arc; * |t can export procedure and data
item names.
End Draw_Arc; * It can import procedure and data
item names.
Export: Draw_Line (Procedure) « It can have debug data defined.

Draw_Arc (Procedure)
rin_code (Data)

import: Draw_Piot (Procedure)

Debug Data for Module M1

RV3W104-0

Figure 2-2. Conceptual View of a Module

ILE Program

An ILE program shares the following characteristics with an OPM program:

¢ The program gets control through a dynamic program call.

¢ There is only one entry point to the program.

¢ The program is identified to the system by the symbol *PGM.
An ILE program has the following characteristics that an OPM program does not‘
have:

e An ILE program is created from one or more copied module objects.

¢ One or more of the copied modules can contain a PEP.

¢ You have control over which module’s PEP is used as the PEP for the ILE
program object.

When the Create Program (CRTPGM) command is specified, the ENTMOD
parameter allows you to select which module containing a PEP is the program’s
entry point.

Chapter 2. ILE Basic Concepts 2~3

A PEP that is associated with a module that is not selected as the entry point
for the program is ignored. All other procedures and data items of the module
are used as specified. Only the PEP is ignored.

When a dynamic program call is made to an ILE program, the module’s PEP that
was selected at program-creation time is given control. The PEP calls the associ-

ated UEP.

When an ILE program object is created, only those procedures associated with the
copied modules containing debug data can be debugged by the ILE debugger. The
debug data does not affect the performance of a running ILE program.

Figure 2-3 shows a conceptual view of an ILE program object. When the program
PGMEXAMP is called, the PEP of the program, which was defined in the copied
module object M3, is given control. The copied module M2 also has a PEP
defined, but it is ignored and never used by the program.

In this program example, only two modules, M1 and M3, have the necessary data
for the new ILE debugger. Procedures from moduies M2 and M4 cannot be
debugged by using the new ILE debugger.

The imported procedures print and SIN are resolved to exported procedures from

carvice nroarame PRINTS and MATHFLINGC resnectively
programs FRiNic anc MA T REUNG, respectively.

ST VIVO

— *PGM (PGMEXAMP)

Program Entry Procedure (Use PEP in module M3)
User Entry Procedure: (Use P3 in module M3)

rModule M1 —— Module M2 ———
Procedure P1; | PEP
| UEP: P2
DCL D EXTRN;]
Procedure P2;
CallPrc print; CallPrc P1;
End P1; CallPrc P4;
Debug Data { End P2;
rModule M3 rModule M4 ———
PEP Procedure P4;
UEP: P3
DCL X REAL;
Procedure P3; D=SIN(X):
CallPrc P2;
End P3; End P4;
Debug Data

Internally resolved imports: P1, P2, P4, D

Used PEP: Defined in module M3
UEP: Procedure P3 in module M3

Externally resolved imports:

print in *LIBL/PRINTS
SIN in MATHLIB/MATHFUNC

RV2W980-5

Figure 2-3. Conceptual View of an ILE Program

2-4 AS/400 ILE Concepts V3R6

Characteristics of an ILE *PGM object:

One or more modules from any ILE language
are copied to make the *PGM object.

The person who creates the program has
control over which module’s PEP becomes the
only PEP for the program.

On a dynamic program call, the module’s PEP
that was selected as the PEP for the program
gets control to run.

The UEP associated with the selected PEP is
the user’s entry point for the program.

Procedures and data item names cannot be
exported from the program.

Procedures or data item names can be
imported from modules and service programs
but not from program objects. For information
on service programs, see “Service Program”
on page 2-5.

Modules can have debug data.

A program is a runnable object.

Service Program

A service program is a collection of runnable procedures and available data items
easily and directly accessible by other ILE programs or service programs. In many
respects, a service program is similar to a subroutine library or procedure library.

Service programs provide common services that other ILE objects may need;
hence the name service program. An example of a set of service programs pro-
vided by 0S/400 are the run-time procedures for a language. These run-time pro-
cedures often include such items as mathematical procedures and common
input/output procedures.

The public interface of a service program consists of the names of the exported

procedures and data items accessible by other ILE objects. Only those items that
are exported from the module objects making up a service program are eligible to
be exported from a service program.

The programmer can specify which procedures or data items can be known to
other ILE objects. Therefore, a service program can have hidden or private proce-
dures and data that are not available to any other ILE object.

It is possible to update a service program without having to re-create the other ILE
programs or service programs that use the updated service program. The pro-
grammer making the changes to the service program controls whether the change
is compatible with the existing support.

The way that ILE provides for you to control compatible changes is by using the
binder language. The binder language allows you to define the list of procedure
names and data item names that can be exported. A signature is generated from
the names of procedures and data items and from the order in which they are
specified in the binder language. To make compatible changes to a service
program, new procedure or data item names should be added to the end of the
export list. For more information on signatures, the binder language, and protecting
your customers’ investment in your service programs, see “Binder Language” on
page 4-11.

Figure 2-4 on page 2-6 shows a conceptual view of a service program. Notice that
the modules that make up that service program are the same set of modules that
make up ILE program object PGMEXAMP in Figure 2-3 on page 2-4. The pre-
vious signature, Sigyy, for service program SPGMEXAMP contains the names of
procedures P3 and P4. After an upward-compatible change is made to the service
program, the current signature, Sigxx, contains not only the names of procedures
P3 and P4; it also contains the name of data item D. Other ILE programs or
service programs that use procedures P3 or P4 do not have to be re-created.

Although the modules in a service program may have PEPs, these PEPs are

ignored. The service program itself does not have a PEP. Therefore, unlike a
program object, a service program cannot be called dynamically.

Chapter 2. ILE Basic Concepts 2-5

— *SRVPGM

(SPGMEXAMP)
—» P
P4
D
r Module M1—— Module M2 —
PEP
Procedure P1; .
DCL D EXTRN; UEP: A2
Cailp int: Procedure P2;
re print CallPrc P1;
End P1; CallPrc P4;
Debug Data End P2;
(Module M3 (Module M4 ———
PEP
UEP: A3 Procedure P4;
DCL X REAL;
Procedure P3;
CallPrc P2; D=SIN(X);
End PS; End P4;
Debug Data

Internally resolved imports: P1, P2, P4, D

Current Signature = Sigxx
Previous Signature = Sigyy

Externally resolved imports:

print in *LIBL/PRINTS
SIN in MATHLIB/MATHFUNC

RV2W981-8

Figure 2-4. Conceptual View of an ILE Service
Program

2-6 AS/400 ILE Concepts V3R6

Characteristics of an ILE *SRVPGM object:

One or more modules from any ILE language
are copied to make the *SRVPGM obiject.

No PEP is associated with the service
program. Because there is no PEP, a
dynamic program call to a service program is
not valid. A module’s PEP is ignored.

Other ILE programs or service programs can
use the exports of this service program identi-
fied by the public interface.

Signatures are generated from the procedure
and data item names that are exported from
the service program.

Service programs can be replaced without
affecting the ILE programs or service pro-
grams that use them, as long as previous sig-
natures are still supported.

Modules can have debug data.

A service program is a collection of runnable
procedures and data items.

Weak data can be exported only to an acti-
vation group. It cannot be made part of the
public interface that is exported from the
service program. For information about weak
data, see Export in “Binder Information Listing
for Example Service Program” on page A-7.

Binding Directory

A binding directory contains the names of modules and service programs that you
may need when creating an ILE program or service program. Modules or service
programs listed in a binding directory are used only if they provide an export that
can satisfy any currently unresolved import requests. A binding directory is a
system object that is identified to the system by the symbol *BNDDIR.

Binding directories are optional. The reasons for using binding directories are con-

venience and program size.

* They offer a convenient method of packaging the modules or service programs
that you may need when creating your own ILE program or service program.
For example, one binding directory may contain all the modules and service
programs that provide math functions. If you want to use some of those func-
tions, you specify only the one binding directory, not each module or service

program you use.

» Binding directories can reduce program size because you do not specify
modules or service programs that do not get used.

Very few restrictions are placed on the entries in a binding directory. The name of
a module or service program can be added to a binding directory even if that object

does not yet exist.

For a list of CL commands used with binding directories, see Appendix C, “CL
Commands Used with ILE Objects” on page C-1.

Figure 2-5 shows a conceptual view of a binding directory.

— Binding Directory (ABD)

Object Name Object Type Obiject Library

QALLOC *SRVPGM *LIBL
QMATH *SRVPGM QSYS
QFREE *MODULE *LIBL
QHFREE *SRVPGM ABC

RV2W982-0

Figure 2-5. Conceptual View of a Binding Directory

Characteristics of a *“BNDDIR object:

e Convenient method of grouping the names of
service programs and modules that may be
needed to create an ILE program or service
program.

» Because binding directory entries are just
names, the objects listed do not have to exist
yet on the system.

¢ The only valid library names are *LIBL or a
specific library.

¢ The objects in the list are optional. The
named objects are used only if any unre-
solved imports exist and if the named object
provides an export to satisfy the unresolved
import request.

Chapter 2. ILE Basic Concepts 2=7

Binder Functions

The function of the binder is similar to, but somewhat different from, the function
provided by a linkage editor. The binder processes import requests for procedure
names and data item names from specified modules. The binder then tries to find
matching exports in the specified modules, service programs, and binding directo-
ries.

In creating an ILE program or service program, the binder performs the following
types of binding:

* Bind by copy
To create the ILE program or service program, the following are copied:

The modules specified on the module parameter
Any modules selected from the binding directory that provide an export for
an unresolved import

Physical addresses of the needed procedures and data items used within the
copied modules are established when the ILE program or service program is
created.

For example, in Figure 2-4 on page 2-6, procedure P3 in module M3 calls pro-
cedure P2 in module M2. The physical address of procedure P2 in module M2
is made known to procedure M3 so that address can be directly accessed.

¢ Bind by reference

Symbolic links to the service programs that provide exports for unresolved
import requests are saved in the created program or service program. The
symbolic links refer to the service programs providing the exports. The links
are converted to physical addresses when the program object to which the
service program is bound is activated.

Figure 2-4 on page 2-6 shows an example of a symbolic link to SIN in service
program *MATHLIB/MATHFUNC. The symbolic link to SIN is converted to a
physical address when the program object to which service program
SPGMEXAMP is bound is activated.

At run time, with physical links established to the procedures and data items being
used, there is little performance difference between the following:

* Accessing a local procedure or data item
* Accessing a procedure or data item in a different module or service program
bound to the same program

Figure 2-6 on page 2-9 and Figure 2-7 on page 2-9 show conceptual views of
how the ILE program PGMEXAMP and service program SPGMEXAMP were
created. The binder uses modules M1, M2, M3, and M4 and service programs
PRINTS and MATHFUNC to create ILE program PGMEXAMP and service program
SPGMEXAMP.

2-8 AS/400 ILE Concepts V3R6

Service Programs

Module M1 Module M2 Module M3 Module M4 PRINTS MATHFUNC

]

!

CRTPGM PGM(PGMEXAMP) MODULE (M1, M2, M3, M4) ENTMOD(*LIBL/M3) +
BNDSRVPGM(*LIBL/PRINTS MATHLIB/MATHFUNC)

i

Binder

i

Program
PGMEXAMP

RV2W983-3

Figure 2-6. Creation of an ILE Program. The broken line indicates that the service programs are bound by refer-
ence instead of being bound by copy.

Service Programs

Module M1 Module M2 Module M3 Module M4 PRINTS MATHFUNC

i

CRTSRVPGM SRVPGM(SPGMEXAMP) MODULE (M1, M2, M3, M4) EXPORT(*SRCFILE) +
SRCFILE(*LIBL/QSRVSRC) SRCMBR(*SRVPGM) BNDSRVPGM(*LIBL/PRINTS MATHLIB/MATHFUNC)

l

Binder

i

Service Program
SPGMEXAMP

RV3W030-1

Figure 2-7. Creation of a Service Program. The broken line indicates that the service programs are bound by refer-
ence instead of being bound by copy.

For additional information on creating an ILE program or service program, see
Chapter 4, “Program Creation Concepts” on page 4-1.

Chapter 2. ILE Basic Concepts 2-9

Calls to Programs and Procedures

In ILE you can call either a program or a procedure. ILE requires that the caller

identify whether the target of the call statement is a program or a procedure. ILE
languages communicate this requirement by having separate call statements for

programs and for procedures. Therefore, when you write your ILE program, you

must know whether you are calling a program or a procedure.

Each ILE language has unique syntax that allows you to distinguish between a
dynamic program call and a static procedure call. The standard call statement in
each ILE language defaults to either a dynamic program call or a static procedure
call. For RPG and COBOL the default is a dynamic program call, and for C the
default is a static procedure call. Thus, the standard language call performs the
same type of function in either OPM or ILE. This convention makes migrating from
an OPM language to an ILE language relatively easy.

The binder can handle a procedure name that is up to 256 characters long. To
determine how long your procedure names can be, see your ILE HLL programmer’s
guide.

Dynamic Program Calls
A dynamic program call transfers control to either an ILE program cobject or an

OPM program object. Dynamic program calls include the following:

* An OPM program can call another OPM program or an ILE program, but it
cannot call a service program.

* An ILE program can call an OPM program or another ILE program, but it
cannot call a service program.

* A service program can call an OPM program or an ILE program, but it cannot
call another service program.

Static Procedure Calls
A static procedure call transfers control to an ILE procedure. Static procedure
calls can be coded only in ILE languages. A static procedure call can be used to
call any of the following:

¢ A procedure within the same module

* A procedure in a separate module within the same ILE program or service
program

* A procedure in a separate ILE service program

2-10 AS/400 ILE Concepts V3R6

Figure 2-8 shows examples of static procedure calls. The figure shows that:

* A procedure in an ILE program can call an exported procedure in the same
program or in a service program. Procedure P1 in program A calls procedure
P2 in another copied module. Procedure P3 in program C calls procedure P4
in service program D.

* A procedure in a service program can call an exported procedure in the same
service program or in another service program. Procedure P6 in service
program B calls procedure P7 in another copied module. Procedure P5 in
service program E calls procedure P4 in service program F.

~ Program A
—Module
Proc: P1

CallPrc P2
End P1

—Module
Proc: P2

Static
Procedure
Call

End P2

~ Program C

Module
Proc: P3

Static Procedure Call

(Service Program B —

—Module
Proc: P6

CallPrc P7
End P6

—Module
Proc: P7

End P7

~Service Program D—

—Module
Proc: P4

CallPrc P4
End P3

~Service Program E —

Module
Proc: P5

Static Procedure Call

End P4

(Service Program F —

—Module
Proc: P4

CallPrc P4
End P5

Figure 2-8. Static Procedure Calls

End P4

Chapter 2. ILE Basic Concepts

Static
Procedure
Call

RV2W993-2

2-11

Activation

After successfully creating an ILE program, you will want to run your code. The
process of getting a program or service program ready to run is called activation.
You do not have to issue a command to activate a program. Activation is done by
the system when a program is called. Because service programs are not called,
they are activated during the call to a program that directly or indirectly requires
their services.

Activation performs the following functions:

* Uniquely allocates the static data needed by the program or service program
¢ Changes the symbolic links to service programs providing the exports into links
to physical addresses

No matter how many jobs are running a program or service program, only one copy
of that object’s instructions reside in storage. The only way to keep the program
running correctly is for each job to have its own copy of the program’s variables.
Activation helps ensure that your job’s version of the running program or service
program does not intrude on another job using the same object. A program can be
activated in more than one activation group, even within the same job, but acti-
vation is local to a particular activation group.

If either of the following is true:

e Activation cannot find the needed service program
* The service program no longer supports the procedures or data items repres-
ented by the signature

an error occurs and you cannot run your application.

For more details on program activation, refer to “Program Activation Creation” on
page 3-2.

When activation allocates the storage necessary for the static variables used by a
program, the space is allocated from an activation group. At the time the program
or service program is created, you can specify the activation group that should be
used at run time.

For more information on activation groups, refer to “Activation Group” on page 3-3.

2-12 AS/400 ILE Concepts V3R6

Error Handling

Figure 2-9 shows the complete error-handling structure for both OPM and ILE pro-
grams. This figure is used throughout this manual to describe advanced error-
handling capabilities. This topic gives a brief overview of the standard language
error-handling capabilities. For additional information on error handling, refer to
“Error Handling” on page 3-12.

The figure shows a fundamental layer called exception message architecture. An
exception message may be generated by the system whenever an OPM program
or an ILE program encounters an error. Exception messages are also used to
communicate status information that may not be considered a program error. For
example, a condition that a database record is not found is communicated by
sending a status exception message.

Each high-level language defines language-specific error-handling capabilities.
Although these capabilities vary by language, in general it is possible for each HLL
user to declare the intent to handle specific error situations. The declaration of this
intent includes identification of an error-handling routine. When an exception
occurs, the system locates the error-handling routine and passes control to user-
written instructions. You can take various actions, including ending the program or
recovering from the error and continuing.

Figure 2-9 shows that ILE uses the same exception-message architecture that is
used by OPM programs. Exception messages generated by the system initiate
language-specific error handling within an ILE program just as they do within an
OPM program. The lowest layer in the figure includes the capability for you to send
and receive exception messages. This can be done with message handler APIs or
commands. Exception messages can be sent and received between ILE and OPM

programs.

.~ Original Program Model —----- . r—Integrated Language B
I (OPM) ! ! Environment (ILE) |
? o |
| |
| CL RPG b C CL ‘ ’ RPG || COBOL | !
| o I
T R
HLL - Specific HLL - Specific Direct ILE
Handlers Handlers Monitors Conditions
Unhandled Exception Unhandled Exception
Default Actions Default Actions
Exception Message Architecture
RV3W101-0

Figure 2-9. Error Handling for OPM and ILE

Language-specific error handling works similarly for ILE programs as for OPM pro-
grams, but there are basic differences:

* When the system sends an exception message to an ILE program, the proce-
dure and module name are used to qualify the exception message. [f you send

Chapter 2. ILE Basic Concepts 2-13

an exception message, these same qualifications can be specified. When an
exception message appears in the job log for an ILE program, the system
normally supplies the program name, module name, and procedure name.

» Extensive optimization for ILE programs can result in multiple HLL statement
numbers associated with the same generated instructions. As the result of
optimization, exception messages that appear in the job log may contain mul-
tiple HLL statement numbers.

Additional error-handling capabilities are described in “Error Handling” on
page 3-12.

Optimizing Translator

On the AS/400, optimization means maximizing the run-time performance of the
object. All ILE languages have access to the optimization techniques provided by
the ILE optimizing translator. Generally, the higher the optimizing request, the
longer it takes to create the object. At run time, highly optimized programs or
service programs should run faster than corresponding programs or setrvice pro-
grams created with a lower level of optimization.

Although optimization can be specified for a module, program object, and service

optimization are:

10 or *NONE

20 or *BASIC

30 or *FULL

40 (more optimization than level 30)

For performance reasons, you probably want a high level of optimization when you
use a module in production. Test your code at the optimization level at which you
expect to use it. Verify that everything works as expected, then make the code
available to your users.

Because optimization at level 30 (*FULL) or level 40 can significantly affect your
program instructions, you may need to be aware of certain addressing exceptions
and debugging limitations. Refer to Chapter 9, “Debugging Considerations” on
page 9-1 for debug considerations. Refer to Appendix B, “Optimization Errors” on
page B-1 for addressing error considerations.

2-14 AS/400 ILE Concepts V3R6

Debugger

ILE provides a debugger that allows source-level debugging. The debugger can
work with a listing file and allow you to set breakpoints, display variables, and step
into or over an instruction. You can do these without ever having to enter a
command from the command line. A command line is also available while working
with the debugger.

The source-level debugger uses system-provided APIs to allow you to debug your
program or service program. These APIls are available to everyone and allow you
to write your own debugger.

The debuggers for OPM programs continue to exist on the AS/400 system but can
be used to debug only OPM programs.

When you debug an optimized module, some confusion may result. When you use
the ILE debugger to view or change a variable being used by a running program or
procedure, the following happens. The debugger retrieves or updates the data in
the storage location for this variable. At level 20 (*BASIC), 30 (*FULL), or 40 opti-
mization, the current value of a data variable may be in a hardware register, where
the debugger cannot access it. (Whether a data variable is in a hardware register
depends on several factors. Those factors include how the variable is used, its
size, and where in the code you stopped to examine or change the data variable.)
Thus, the value displayed for a variable may not be the current value. For this
reason, you should use an optimization level of 10 (*NONE) during development.
Then, for best performance, you should change the optimization level to 30 (*FULL)

ar AN durina nradinintinn
U1 v Guriy proGuculnt.

For more information on the ILE debugger, see Chapter 9, “Debugging
Considerations” on page 9-1.

Chapter 2. ILE Basic Concepts 2-15

2-16 AS/400 ILE Concepts V3R6

Chapter 3. ILE Advanced Concepts

This chapter describes advanced concepts for the ILE model. Before reading this
chapter, you should be familiar with the concepts described in Chapter 2, “ILE
Basic Concepts” on page 2-1.

Program Activation

© Copyright IBM Corp. 1995

Activation is the process used to prepare a program to run. Both ILE programs
and ILE service programs must be activated by the system before they can be run.

Program activation includes two major steps:

1. Allocate and initialize static storage for the program.
2. Complete the binding of programs to service programs.

This topic concentrates on step 1. Step 2 is explained in “Service Program
Activation” on page 3-8.

Figure 3-1 on page 3-2 shows two ILE program objects stored in permanent disk
storage. As with all 0S/400 objects, these program objects may be shared by mul-
tiple concurrent users running in different OS/400 jobs. Only one copy of the pro-
gram's code exists. When one of these ILE programs is called, however, variables
declared within the program must be allocated and initialized for each program acti-
vation. These variables are called static variables.

As shown in Figure 3-1, each program activation supports at least one unique copy
of these variables. Multiple copies of variables with the same name can exist
within one program activation. This occurs if your HLL allows you to declare static
variables that are scoped to individual procedures.

3-1

TN
S

Program A

Program
Instructions

w

—dJob — Job
,~ Activation Group - ==~ .~ Activation Group ~——~

One copy of
program instructions

Program A Program A

\
|
i
Variable X = 20 }
|
|
|

\
|
i
|
Variable X = 10 :
|
|
|

N N N~

One copy of static variables
for each program activation

RV2W986-3

Figure 3-1. One Copy of Static Variables for Each Program Activation

An ILE program activation is created as part of an HLL dynamic program call. ILE
manages the process of program activation by keeping track of program activations
within an activation group. Refer to “Activation Group” on page 3-3 for a definition
of an activation group. Only one activation for a particular program object is in an
activation group. Programs of the same name residing in different AS/400 libraries
are considered different program objects when applying this rule.

When you use a dynamic program call statement in your HLL program, ILE uses
the activation group that was specified when the program was created. This attri-
bute is specified by using the activation group (ACTGRP) parameter on either the
Create Program (CRTPGM) command or the Create Service Program
(CRTSRVPGM) command. If a program activation already exists within the acti-
vation group indicated with this parameter, it is used. If the program has never
been activated within this activation group, it is activated first and then run.

Once a program is activated, it remains activated until the activation group is
deleted. As a result of this rule, it is possible to have active programs that are not
on the call stack within the activation group. Figure 3-2 on page 3-3 shows an
example of three active programs within an activation group, but only two of the
three programs have procedures on the call stack. In this example, program A
calls program B, causing program B to be activated. Program B then returns to
program A. Program A then calls program C. The resulting call stack contains
procedures for programs A and C but not for program B. For a discussion of the
call stack, see “Call Stack” on page 6-1.

3-2 AS/400 ILE Concepts V3R6

—dJob

~—Activation Group----~---—-—-—-———-——- ~

/
| Active Programs Call Stack |
| T |
: Procedures |
‘ called in \
| Program A |
} t
[. :

|
| Program B I
| Activation) |
|
: |
| |
| Procedures |
| called in |
| Program C |
‘\\ //i

RV2W987-3

Figure 3-2. Program May Be Active But Not on the Call Stack

Activation Group

All ILE programs and service programs are activated within a substructure of a job
called an activation group. This substructure contains the resources necessary to
run the programs. These resources fall into the following general categories:

Static and automatic program variables

Dynamic storage

Temporary data management resources

Certain types of exception handlers and ending procedures

The static and automatic program variables and dynamic storage are assigned sep-
arate address spaces for each activation group. This provides some degree of
program isolation and protection from accidental access.

The temporary data management resources include the following:

Open files (open data path or ODP)

Commitment definitions

Local SQL cursors

Remote SQL cursors

Hierarchical file system (HFS)

User interface manager

Query management instances

Open communications links

Common Programming Interface (CPl) communications

The separation of these resources among activation groups supports a fundamental
concept. That is, the concept that all programs activated within one activation
group are developed as one cooperative application.

Software vendors may select different activation groups to isolate their programs
from other vendor applications running in the same job. This vendor isolation is

Chapter 3. ILE Advanced Concepts 3-3

shown in Figure 3-3 on page 3-4. In this figure, a complete customer solution is
provided by integrating software packages from four different vendors. Activation
groups increase the ease of integration by isolating the resources associated with
each vendor package.

—— Job

{// Activation Group -——~

.~ Activation Group -——~_
|

AN

RPG Order Entry
Application from

\
|

| RPG Accounts Payable
: Vendor 1

:

|

Application from
Vendor 2

{
I I
I |
I I
! I
I |
I |
I I
I [
| |

,— Activation Group - -~ \\:><:, —Activation Group - ——~
COBOL Inventory Control

i
|
|
|
| Application from
|
|
I
|

|

|

i C Decision Support
Vendor 3 |

|

|

!

Application from
Vendor 4

|
|
|
|
|
|
|
|
|
!

RV2W988-1

Figure 3-3. Activation Groups Isolate Each Vendor's Application

There is a significant consequence of assigning the above resources to an acti-
vation group. The consequence is that when an-activation group is deleted, all of
the above resources are returned to the system. The temporary data management
resources left open at the time the activation group is deleted are closed by the
system. The storage for static and automatic program variables and dynamic
storage that has not been deallocated is returned to the system.

Activation Group Creation

You can control the creation of an ILE activation group by specifying an activation
group attribute when you create your program or service program. Based on this
attribute, an activation group is created by ILE as part of the dynamic program call
processing. The attribute is specified by using the ACTGRP parameter on the
CRTPGM command or CRTSRVPGM command. There is no Create Activation
Group command.

All ILE programs have one of the following activation group attributes:
¢ A user-named activation group

Specified with the ACTGRP(name) parameter. This attribute allows you to
manage a collection of ILE programs and ILE service programs as one applica-

3-4 AS/400 ILE Concepts V3R6

tion. The activation group is created when it is first needed. It is then used by
all programs and service programs that specify the same activation group
name.

¢ A system-named activation group

Specified with the ACTGRP(*NEW) parameter on the CRTPGM command.
This attribute allows you to create a new activation group whenever the
program is called. ILE selects a name for this activation group. The name
assigned by ILE is unique within your job. The name assigned to a system-
named activation group does not match any name you choose for a user-
named activation group. ILE service programs do not support this attribute.

* An attribute to use the activation group of the calling program

Specified with the ACTGRP(*CALLER) parameter. This attribute allows you to
create an ILE program or ILE service program that will be activated within the
activation group of the calling program. With this attribute, a new activation
group is never created when the program or service program is activated.

All activation groups within a job have a name. Once an activation group exists
within a job, it is used by ILE to activate programs and service programs that
specify that name. As a result of this design, duplicate activation group names
cannot exist within one job.

Default Activation Groups

When an OS/400 job is started, the system creates two activation groups to be
used by OPM programs. One activation group is reserved for OS/400 system
code. The other activation group is used for all other OPM programs. You cannot
delete the OPM default activation groups. They are deleted by the system when
your job ends.

ILE programs and ILE service programs can be activated in the OPM default acti-
vation groups if two conditions are satisfied:

» The ILE programs or ILE service programs were created with the activation
group *CALLER option.

* The call to the ILE programs or ILE service programs originates in the OPM
default activation groups.

Because the default activation groups cannot be deleted, your HLL end verbs
cannot provide complete end processing. Open files cannot be closed, and storage
used by your ILE programs cannot be returned to the system.

Figure 3-4 on page 3-6 shows a typical OS/400 job with an ILE activation group
and the OPM default activation groups. The two OPM default activation groups are
combined because the special value *“DFTACTGRP is used to represent both
groups. The boxes within each activation group represent program activations.

Chapter 3. ILE Advanced Concepts 3~5

|
|
|
|
|
|
|
|
|
|
|
|
1
\

!

|
|
|
|
|
|
|
|
|
1
|
|
|
|

— Job
~—Default Activation Group ~-———————~-——-———~ N

,— Activation Group -~ ——~

~OPM

Program A
Activation gySS/téleOn(;)

Code

-OPM ——————— Program
Activations

Program B
Activation

\

ILE

Program C
Activation

rILE

Program D
Activation

——— -

RV2W989-3

Figure 3-4. Default Activation Groups and ILE Activation Group

ILE Activation Group Deletion
Activation groups require resources to be created within a job. Processing time
may be saved if an activation group can be reused by an application. ILE provides
several options to allow you to return from the activation group without ending or
deleting the activation group. Whether the activation group is deleted depends on
the type of activation group and the method in which the application ended.

An application may leave an activation group and return to a call stack entry (see
“Call Stack” on page 6-1) that is running in another activation group in the following
ways:

HLL end verbs
For example, STOP RUN in COBOL or exit() in C.
Unhandled exceptions

Unhandled exceptions can be moved by the system to a call stack entry in
another activation group.

Language-specific HLL return statements

For example, a return statement in C, an EXIT PROGRAM statement in
COBOL, or a RETURN statement in RPG.

Skip operations

For example, sending an exception message or branching to a call stack entry
that is not in your activation group.

You can delete an activation group from your application by using HLL end verbs.
An unhandled exception can also cause your activation group to be deleted. These

3-6 AS/400 ILE Concepts V3R6

operations will always delete your activation group, provided the nearest control
boundary is the oldest call stack entry in the activation group (sometimes called a
hard control boundary). If the nearest control boundary is not the oldest call stack
entry (sometimes called a soft control boundary), control passes to the call stack
entry prior to the control boundary. However, the activation group is not deleted.

A control boundary is a call stack entry that represents a boundary to your applica-
tion. ILE defines control boundaries whenever you call between activation groups.
Refer to “Control Boundaries” on page 3-10 for a definition of a control boundary.

A user-named activation group may be left in the job for later use. For this type of
activation group, any normal return or skip operation past a hard control boundary
does not delete the activation group. The same operations used within a system-
named activation group deletes the activation group. System-named activation
groups are always deleted because you cannot reuse them by specifying the
system-generated name. For language-dependent rules about a normal return from
the oldest call stack entry of an activation group, refer to the ILE HLL programmer’s
guides.

Figure 3-5 shows examples of how to leave an activation group. In the figure, pro-
cedure P1 is the oldest call stack entry. For the system-named activation group
(created with the ACTGRP(*NEW) option), a normal return from P1 deletes the acti-
vation group. For the user-named activation group (created with the
ACTGRP(name) option), a normal return from P1 does not delete the activation

group.

System-Named User-Named

Alwayﬁ Delete /™ Activation Group ~” Activation Group \\] NeverADelete
| z s T |
Nor'mal Return

| 2
Normal Return

rLE ILE

Skip

Procedure Pn Procedure Pn

\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/

|
|
|
|
|
|
;
i Skip
|
|
]

N<-ACTGRP('NEW)---" “- ACTGRP(NAME) - —-" AVaW1036.2

Figure 3-5. Leaving User-Named and System-Named Activation Groups

If a user-named activation group is left in the job, you can delete it by using the
Reclaim Activation Group (RCLACTGRP) command. This command allows you to
delete named activation groups after your application has returned. Only activation
groups that are not in use can be deleted with this command.

Figure 3-6 on page 3-8 shows an OS/400 job with one activation group that is not
in use and one activation group that is currently in use. An activation group is
considered in use if there are call stack entries for the ILE procedures activated
within that activation group. Using the RCLACTGRP command in program A or
program B deletes the activation group for program C and program D.

Chapter 3. ILE Advanced Concepts 3-7

—Job
~~Activation Group inUse ————=—=—~ ~
Active Programs Call Stack

. Procedures
. Program A called in
. Program A

Procedures
called in
Program B

—— e —

~—Activation Group Not in Use~
Active Programs

Program C
Activation

Program D
Activation

DU
RV2WS380-4

Figure 3-6. Activation Groups In Use Have Entries on the Call Stack

When an activation group is deleted by ILE, certain end-operation processing
occurs. This processing includes calling user-registered exit procedures, data man-
agement cleanup, and language cleanup (such as closing files). Refer to “Data
Management Scoping Rules” on page 3-19 for details on the data management
processing that occurs when an activation group is deleted.

Service Program Activation

This topic discusses the unique steps the system uses to activate a service
program. The common steps used for programs and service programs are
described in “Program Activation” on page 3-1. The following activation activities
are unique for service programs:

e Service program activation starts indirectly as part of a dynamic program call to
an ILE program.

¢ Service program activation includes completion of interprogram binding linkages
by mapping the symbolic links into physical links.

e Service program activation includes signature check processing.

An ILE program activated for the first time within an activation group, is checked for
binding to any ILE service programs. If service programs have been bound to the
program being activated, they are also activated as part of the same dynamic call
processing. This process is repeated until all necessary service programs are acti-
vated.

Figure 3-7 on page 3-9 shows ILE program A bound to ILE service programs B, C,
and D. ILE service programs B and C are also bound to ILE service program E.
The activation group attribute for each program and service program is shown.

3-8 AS/400 ILE Concepts V3R6

LE

Program A
ACTGRP(X)
ILE ‘ ILE ILE
Service Program B Service Program C Service Program D
ACTGRP(X) ACTGRP(X) ACTGRP(Y)

ILE

Service Program E
ACTGRP(*CALLER)

RV2W991-1

Figure 3-7. Service Program Activation

When ILE program A is activated, the following takes place:

* The service programs are located by using an explicit library name or by using
the current library list. This option is controlled by you at the time the programs
and service programs are created.

» Just like programs, a service program activation occurs only once within an
activation group. In Figure 3-7, service program E is activated only one time,
even though it is used by service programs B and C.

* A second activation group (Y) is created for service program D.

» Signature checking occurs among all of the programs and service programs.

Conceptually this process may be viewed as the completion of the binding process
started when the programs and service programs were created. The CRTPGM
command and CRTSRVPGM command saved the name and library of each refer-
enced service program. An index into a table of exported procedures and data
items was also saved in the client program or service program at program creation
time. The process of service program activation completes the binding step by
changing these symbolic references into addresses that can be used at run time.

Once a service program is activated static procedure calls and static data item ref-
erences to a module within a different service program are processed. The amount
of processing is the same as would be required if the modules had been bound by
copy into the same program. However, modules bound by copy require less acti-
vation time processing than service programs.

The activation of programs and service programs requires execute authority to the
ILE program and all ILE service program objects. In Figure 3-7, the current
authority of the caller of program A is used to check authority to program A and all
of the service programs. The authority of program A is also used to check authority
to all of the service programs. Note that the authority of service program B, C, or D
is not used to check authority to service program E.

Chapter 3. ILE Advanced Concepts 3-9

Control Boundaries

ILE takes the following action when an unhandled function check occurs, or an HLL
end verb is used. ILE transfers control to the caller of the call stack entry that
represents a boundary for your application. This call stack entry is known as a
control boundary.

There are two definitions for a control boundary. “Control Boundaries for ILE Acti-
vation Groups” and “Control Boundaries for the OPM Default Activation Group” on
page 3-11 illustrate the following definitions.

A control boundary can be either of the following:

* Any ILE call stack entry for which the immediately preceding call stack entry is
in a different nondefault activation group.

* Any ILE call stack entry for which the immediately preceding call stack entry is
an OPM program.

Control Boundaries for ILE Activation Groups

This example shows how control boundaries are defined between ILE activation
groups.

Figure 3-8 shows two ILE activation groups and the control boundaries established
by the various calls. Procedures P2, P3, and P6 are potential control boundaries.
For example, when you are running in procedure P7, procedure P6 is the control
boundary. When you are running in procedures P4 or P5, procedure P3 becomes

tha control hotindary
uiv vuiiltnvi vuui qul_y'

Call Stack

ILE
‘7 Procedure P1

|

- —Activation Group A1-- S o —Activation Group A2 -~
[/ \

Procedure P4

~ILE —Y
Procedure P5

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/

~

RV2W992-3

Figure 3-8. Control Boundaries. The shaded procedures are control boundaries.

3-10 AS/400 ILE Concepts V3R6

Control Boundaries for the OPM Default Activation Group

This example shows how control boundaries are defined when an ILE program is
running in the OPM default activation group.

Figure 3-9 shows three ILE procedures (P1, P2, and P3) running in the OPM
default activation group. This example could have been created by using the
CRTPGM command or CRTSRVPGM command with the ACTGRP(*CALLER)
parameter value. Procedures P1 and P3 are potential control boundaries because
the preceding call stack entries are OPM programs A and B.

,—— Default Activation Group -—- N
/

PM
Program A

PILE - ¢

rLE

Procedure P2

Program B

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
\ /

\
~=-*DFTACTGRP ————————~ g
RV2W1040-1
Figure 3-9. Control Boundaries in the Default Activation Group. The shaded procedures
are control boundaries.

Control Boundary Use

When you use an ILE HLL end verb, ILE uses the most recent control boundary on
the call stack to determine where to transfer control. The call stack entry just prior
to the control boundary receives control after ILE completes all end processing.

The control boundary is used when an unhandled function check occurs within an
ILE procedure. The control boundary defines the point on the call stack at which
the unhandled function check is promoted to the generic ILE failure condition. For
additional information, refer to “Error Handling” on page 3-12.

When the nearest control boundary is the oldest call stack entry in an ILE activation
group, any HLL end verb or unhandled function check causes the activation group
to be deleted. When the nearest control boundary is not the oldest call stack entry
in an ILE activation group, control returns to the call stack entry just prior to the

Chapter 3. ILE Advanced Concepts 3-11

control boundary. The activation group is not deleted because earlier call stack
entries exist within the same activation group.

Figure 3-8 on page 3-10 shows procedure P2 and procedure P3 as the oldest call
stack entries in their activation groups. Using an HLL end verb in procedure P2,
P3, P4, or P5 (but not P6 or P7) would cause activation group A2 to be deleted.

Error Handling

This topic explains advanced error handling capabilities for OPM and ILE programs.
To understand how these capabilities fit into the exception message architecture,
refer to Figure 3-10. Specific reference information and additional concepts are
found in Chapter 8, “Exception and Condition Management” on page 8-1.

Figure 3-10 shows an overview of error handling. This topic starts with the bottom
layer of this figure and continues to the top layer. The top layer represents the
functions you may use to handle errors in an OPM or ILE program.

i~ Original Program Model —----~ i r-Integrated Language ——--------—--—--—
I (OPM) } : Environment (ILE) |
: | ; :
| | |
! ’ CcL [RPG l b c CcL [RPG ‘ COBOL | !
| ! |
o ____ R j
HLL - Specific HLL - Specific Direct ILE
Handlers Handlers Monitors Conditions
Unhandled Exception , Unhandled Exception
Default Actions Default Actions
Exception Message Architecture
RV3W101-0

Figure 3-10. ILE and OPM Error Handling

Job Message Queues

A message queue exists for every call stack entry within each 0S/400 job. This
message queue facilitates the sending and receiving of informational messages and
exception messages between the programs and procedures running on the call
stack. The message queue is referred to as the call message gueue.

The call message queue is identified by the name of the OPM program or ILE pro-
cedure that is on the call stack. The procedure name or program name can be
used to specify the target call stack entry for the message that you send. Because
ILE procedure names are not unique, the ILE module name and ILE program or
service program name can optionally be specified. When the same program or
procedure has multiple call stack entries, the nearest call message queue is used.

In addition to the call message queues, each OS/400 job contains one external
message queue. All programs and procedures running within the job can send

3-12 AS/400 ILE Concepts V3R6

and receive messages between an interactive job and the workstation user by
using this queue.

For more information on how to send and receive exception messages, refer to the
message handling APIs in the System API Reference.

Exception Messages and How They Are Sent

This topic describes the different exception message types and the ways in which
an exception message may be sent.

Error handling for ILE and OPM is based on exception message types. Unless
otherwise qualified, the term exception message indicates any of these message

types:
Escape (*ESCAPE) Indicates an error causing a program to end abnormally,

without completing its work. You will not receive control after
sending an escape exception message.

Status (*STATUS) Describes the status of work being done by a program. You
may receive control after sending this message type. Whether
you receive control depends on the way the receiving program
handles the status message.

Notify (“NOTIFY) Describes a condition requiring corrective action or a reply from
the calling program. You may receive control after sending this
message type. Whether you receive control depends on the
way the receiving program handles the notify message.

Function Check Describes an ending condition that has not been expected by
the program. An ILE function check, CEE9901, is a special
message type that is sent only by the system. An OPM func-
tion check is an escape message type with a message ID of
CPF9999.

For information on these message types and other OS/400 message types, refer to
the System API Reference.
An exception message is sent in the following ways:

* Generated by the system

0S/400 (including your HLL) generates an exception message to indicate a
programming error or status information.

¢ Message handler API

The Send Program Message (QMHSNDPM) API can be used to send an
exception message to a specific call message queue.

* ILE API

The Signal a Condition (CEESGL) bindable APl can be used to raise an ILE
condition. This condition results in an escape exception message or status
exception message.

* Language-specific verbs

For ILE C/400, the raise() function generates a C signal. Neither ILE RPG/400
nor ILE COBOL/400 has a similar function.

Chapter 3. ILE Advanced Concepts 3-13

How Exception Messages Are Handled

When you or the system send an exception message, exception processing begins.
This processing continues until the exception is handled, which is when the excep-
tion message is modified to indicate that it has been handled.

The system modifies the exception message to indicate that it has been handled
when it calls an exception handler for an OPM call message queue. Your ILE HLL
modifies the exception message before your exception handler is called for an ILE
call message queue. As a result, HLL-specific error handling considers the excep-
tion message handied when your handler is called. If you do not use HLL-specific
error handling, your ILE HLL can either handle the exception message or allow
exception processing to continue. Refer to your ILE HLL reference manual to
determine your HLL default actions for unhandled exception messages.

To allow you to bypass language-specific error handling, additional capabilities are
defined for ILE. These capabilities include direct monitor handlers and ILE condi-
tion handlers. When you use these capabilities, you are responsible for modifying
the exception message to indicate that the exception is handled. If you do not
modify the exception message, the system continues exception processing by
attempting to locate another exception handler. The topic “Types of Exception
Handlers” on page 3-16 contains details on direct monitor handlers and ILE condi-
tion handlers. To modify an exception message, refer to the Change Exception

Message (QMHCHGEM) API in the System API Reference.

Exception Recovery

You may want to continue processing after an exception has been sent. Recov-
ering from an error can be a useful application tool that allows you to deliver appli-
cations that tolerate errors. For ILE and OPM programs, the system has defined
the concept of a resume point. The resume point is initially set to an instruction
immediately following the occurrence of the exception. After handling an exception,
you may continue processing at a resume point. For more information on how to
use and modify a resume point, refer to Chapter 8, “Exception and Condition
Management” on page 8-1.

Default Actions for Unhandled Exceptions

If you do not handle an exception message in your HLL, the system takes a default
action for the unhandled exception.

Figure 3-10 on page 3-12 shows the default actions for unhandled exceptions
based on whether the exception was sent to an OPM or ILE program. Different
default actions for OPM and ILE create a fundamental difference in error handling
capabilities.

For OPM, an unhandled exception generates a special escape message known as
a function check message. This message is given the special message ID of
CPF9999. It is sent to the call message queue of the call stack entry that incurred
the original exception message. If the function check message is not handled, the
system removes that call stack entry. The system then sends the function check
message to the previous call stack entry. This process continues until the function
check message is handled. If the function check message is never handled, the
job ends.

3-14 AS/400 ILE Concepts V3R6

For ILE, an unhandled exception message is percolated to the previous call stack
entry message queue. Percolation occurs when the exception message is moved
to the previous call message queue. This creates the effect of sending the same
exception message to the previous call message queue. When this happens,
exception processing continues at the previous call stack entry.

Figure 3-11 on page 3-16 shows unhandled exception messages within ILE. In
this example, procedure P1 is a control boundary. Procedure P1 is also the oldest
call stack entry in the activation group. Procedure P4 incurred an exception
message that was unhandled. Percolation of an unhandled exception continues
until either a control boundary is reached or the exception message is handled. An
unhandled exception is converted to a function check when it is percolated to the
control boundary. If the exception is an escape, the function check is generated. If
it is a notify exception, the default reply is sent, the exception is handled, and the
sender of the notify is allowed to continue. If it is a status exception, the exception
is handled, and the sender of the status is allowed to continue. The resume point
(shown in procedure P3) is used to define the call stack entry at which exception
processing of the function check should continue. For ILE, the next processing
step is to send the special function check exception message to this call stack
entry. This is procedure P3 in this example.

The function check exception message can now be handled or percolated to the
control boundary. If it is handled, normal processing continues and exception proc-
essing ends. If the function check message is percolated to the control boundary,
ILE considers the application to have ended with an unexpected error. A generic
failure exception message is defined by ILE for all languages. This message is

CEE9901 and is sent by ILE to the caller of the control boundary.

The default action for unhandled exception messages defined in ILE allows you to
recover from error conditions that occur within a mixed-language application. For
unexpected errors, ILE enforces a consistent failure message for all languages.
This improves the ability to integrate applications from different sources.

Chapter 3. ILE Advanced Concepts 3-15

Call Stack

OPM ———
17 Program A 4—‘
Send
Terminating

Exception
CEE9901

_~—Activation Group

T

Procedure P1

|

|

|

|

i

I Percolate
: Procedure P2 Function
| Check
|

|

|

|

|

|

|

|

|

|

|

|

\
|
|
|
|
|
|
|
|
|
:
i |
Percolate ILE :
|
|
|
|
|
|
|
|
|

Unhandled Procedure P3

Exception | [Resume Point.

L ILE

Procedure P4

RV2W1043-1

Figure 3-11. Unhandled Exception Default Action

Types of Exception Handlers

This topic provides an overview of the exception handler types provided for both
OPM and ILE programs. As shown in Figure 3-10 on page 3-12, this is the top
layer of the exception message architecture. ILE provides additional exception-
handling capabilities when compared to OPM.

For OPM programs, HLL-specific error handling provides one or more handling rou-
tines for each call stack entry. The appropriate routine is called by the system
when an exception is sent to an OPM program.

HLL-specific error handling in ILE provides the same capabilities. ILE, however,
has additional types of exception handlers. These types of handlers give you direct
control of the exception message architecture and allow you to bypass HLL-specific
error handling. The additional types of handlers for ILE are:

Direct monitor handler
ILE condition handler

To determine if these types of handlers are supported by your HLL, refer to your
ILE HLL programmer’s guide.

Direct monitor handlers allow you to directly declare an exception monitor around
limited HLL source statements. For ILE C/400, this capability is enabled through a
#pragma directive. ILE COBOL/400 does not directly declare an exception monitor
around limited HLL source statements in the same sense that ILE C/400 does. An
ILE COBOL/400 program cannot directly code the enablement and disablement of

handlers around arbitrary source code. However, a statement such as

ADD a TO b ON SIZE ERROR imperative

3-16 AS/400 ILE Concepts V3R6

is internally mapped to use the same mechanism. Thus, in terms of the priority of
which handler gets control first, such a statement-scoped conditional imperative
gets control before the ILE condition handler (registered via CEEHDLR). Control
then proceeds to the USE declaratives in COBOL.

ILE condition handlers allow you to register an exception handler at run time.

ILE condition handlers are registered for a particular call stack entry. To register an
ILE condition handler, use the Register a User-Written Condition Handler
(CEEHDLR) bindable API. This API allows you to identify a procedure at run time
that should be given control when an exception occurs. The CEEHDLR API
requires the ability to declare and set a procedure pointer within your language.
CEEHDLR is implemented as a built-in function. Therefore, its address cannot be
specified and it cannot be called through a procedure pointer. ILE condition han-
dlers may be unregistered by calling the Unregister a User-Written Condition
Handler (CEEHDLU) bindable API.

OPM and ILE support HLL-specific handlers. HLL-specific handlers are the lan-
guage features defined for handling errors. For example, the ILE C/400 signal
function can be used to handle exception messages. HLL-specific error handling in
RPG includes the ability to code *PSSR and INFSR subroutines. HLL-specific error
handling in COBOL includes USE declarative for I/O error handling and imperatives
in statement-scoped condition phrases such as ON SIZE ERROR and AT INVALID
KEY.

Exception handler priority becomes important if you use both HLL-specific error
handling and additional ILE exception handler types.

Figure 3-12 on page 3-18 shows a call stack entry for procedure P2. In this
example, all three types of handlers have been defined for a single call stack entry.
Though this may not be a typical example, it is possible to have all three types
defined. Because all three types are defined, an exception handler priority is
defined. The figure shows this priority. When an exception message is sent, the
exception handlers are called in the following order:

1. Direct monitor handlers

First the invocation is chosen, then the relative order of handlers in that invoca-
tion. Within an invocation, all direct monitor handlers and COBOL statement-
scoped conditional imperatives get control before the ILE condition handlers.
Similarly, the ILE condition handlers get control before other HLL-specific han-
dlers.

If direct monitor handlers have been declared around the statements that
incurred the exception, these handlers are called before HLL-specific handlers.
For example, if procedure P2 in Figure 3-12 on page 3-18 has a HLL-specific
handler and procedure P1 has a direct monitor handler, P2’s handler is consid-
ered before P1’s direct monitor handler.

Direct monitors can be lexically nested. The handler specified in the most
deeply nested direct monitor is chosen first within the multiply nested monitors
that specify the same priority number.

2. ILE condition handler

If an ILE condition handler has been registered for the call stack entry, this
handler is called second. Multiple ILE condition handlers may be registered. In
the example, procedure P5 and procedure P6 are ILE condition handlers.

Chapter 3. ILE Advanced Concepts 3-17

When multiple ILE condition handlers are registered for the same call stack
entry, the system calls these handlers in last-in-first-out (LIFO) order. If we
categorize COBOL statement-scoped conditional imperatives as HLL-specific
handlers, those imperatives take priority over the ILE condition handler.

3. HLL-specific handler

HLL-specific handlers are called last.

The system ends exception processing when an exception message is modified to
show that it has been handled. If you are using direct monitor handlers or ILE
condition handlers, modifying the exception message is your responsibility. Several
control actions are available. For example, you can specify handle as a control
action. As long as the exception message remains unhandled, the system con-
tinues to search for an exception handler using the priorities previously defined. If
the exception is not handled within the current call stack entry, percolation to the
previous call stack entry occurs. If you do not use HLL-specific error handling, your
ILE HLL can choose to allow exception handling to continue at the previous call
stack entry.

Call Stack

TILE

Procedure P1

Direct iionitor
Handler

Procedure P4

_ “ILE
| ILE Condition
Handler

Procedure P5

Lastin
First out

ILE -

ILE . -
Procedure P3 i ILE Condition
. Handler

Procedure P6

LE—
HLL - Specific
Handler

Procedure P7

Standard Language
Default

RV2W1041-3

Figure 3-12. Exception Handler Priority

3-18 AS/400 ILE Concepts V3R6

ILE Conditions

To allow greater cross-system consistency, ILE has defined a feature that allows
you to work with error conditions. An ILE condition is a system-independent rep-
resentation of an error condition within an HLL. For the OS/400 operating system,
each ILE condition has a corresponding exception message. An ILE condition is
represented by a condition token. A condition token is a 12-byte data structure
that is consistent across multiple SAA patrticipating systems. This data structure
contains information that allows you to associate the condition with the underlying
exception message.

ILE condition handlers and the percolation model described previously conform to
an SAA architecture. To write programs that are consistent across systems, you
need to use ILE condition handlers and ILE condition tokens. For more information
on ILE conditions refer to Chapter 8, “Exception and Condition Management” on
page 8-1.

Data Management Scoping Rules

Data management scoping rules control the use of data management resources.
These resources are temporary objects that allow a program to work with data
management. For example, when a program opens a file, an object called an open
data path (ODP) is created to connect the program to the file. When a program
creates an override to change how a file should be processed, the system creates
an override object.

Data management scoping rules determine when a resource can be shared by mul-
tiple programs or procedures running on the call stack. For example, open files
created with the SHARE(*YES) parameter value or commitment definition objects
can be used by many programs at the same time. The ability to share a data
management resource depends on the level of scoping for the data management
resource.

Data management scoping rules also determine the existence of the resource. The
system automatically deletes unused resources within the job, depending on the
scoping rules. As a result of this automatic cleanup operation, the job uses less
storage and job performance improves.

ILE formalizes the data management scoping rules for both OPM and ILE programs
into the following scoping levels:

Call
Activation group
Job

Depending on the data management resource you are using, one or more of the
scoping levels may be explicitly specified. If you do not select a scoping level, the
system selects one of the levels as a default.

Refer to Chapter 10, “Data Management Scoping” on page 10-1 for information on

how each data management resource supports the scoping levels. For additional
details, refer to the Data Management book.

Chapter 3. ILE Advanced Concepts 3-19

Call-Level Scoping
Call-level scoping occurs when the data management resource is connected to the
call stack entry that created the resource. Figure 3-13 shows an example. Call-
level scoping is usually the default scoping level for programs that run in the default
activation group. In this figure, OPM program A, OPM program B, or ILE procedure
P2 may choose to return without closing their respective files F1, F2, or F3. Data
management associates the ODP for each file with the call-level number that
opened the file. The RCLRSC command may be used to close the files based on
a particular call-level number passed to that command.

//——Default Activation Group ~——--—--——-~—~ N
OPM

Program A

OPM

Program B

| |
! I
| |
| |
| I
! I
! I
| I
| I
| I
I |
| |
N , |
| |
| I
| & I
I ILE |
| I
| I
I I
| I
| |
! |
| |
| |
| I
| I
| I
I I
| |
\ /

PEP P1

v

UEP P2 ODPF3 |

—— ——
=
m

RV2W1037-1

Figure 3-13. Call-Level Scoping. ODPs and overrides may be scoped to the call level.

Overrides that are scoped to a particular call level are deleted when the corre-
sponding call stack entry returns. Overrides may be shared by any call stack entry
that is below the call level that created the override.

Activation-Group-Level Scoping
Activation-group-level scoping occurs when the data management resource is con-
nected to the activation group of the ILE program or ILE service program that
created the resource. When the activation group is deleted, data management
closes all resources associated with the activation group that have been left open
by programs running in the activation group.

3-20 AS/400 ILE Concepts V3R6

Figure 3-14 shows an example of activation-group-level scoping. Activation-group-
level scoping is the default scoping level for most types of data management
resources used by ILE procedures not running in the default activation group. For
example, the figure shows ODPs for files F1, F2, and F3 and override R1 scoped
to the activation group.

,~ILE Activation Group TN

|
LE—mM ————— Data Management Resources

PEP P1

e v

UEP P2

Procedure P3

e

|
|
|
|
|
|
|
|
|
|
!
I
|
|
|
|
|
|
|
I
|
|
I

——————————————— RV3W102-0

Figure 3-14. Activation Group Level Scoping. ODPs and overrides may be scoped to an
activation group.

The ability to share a data management resource scoped to an activation group is
limited to programs running in that activation group. This provides application iso-
lation and protection. For example, assume that file F1 in the figure was opened
with the SHARE(*YES) parameter value. File F1 could be used by any ILE proce-
dure running in the same activation group. Another open operation for file F1 in a
different activation group results in the creation of a second ODP for that file.

Job-Level Scoping

Job-level scoping occurs when the data management resource is connected to the
job. Job-level scoping is available to bothn OPM and ILE programs. Job-level
scoping allows for sharing data management resources between programs running
in different activation groups. As described in the previous topic, scoping resources
to an activation group limits the sharing of that resource to programs running in that
activation group. Job-level scoping allows the sharing of data management
resources between all ILE and OPM programs running in the job.

Figure 3-15 on page 3-22 shows an example of job-level scoping. Program A may
have opened file F1, specifying job-level scoping. The ODP for this file is con-
nected to the job. The file is not closed by the system unless the job ends. If the
ODP has been created with the SHARE(YES) parameter value, any OPM program
or ILE procedure could potentially share the file.

Chapter 3. ILE Advanced Concepts 3-21

—dJob

/ —Default Activation Group- N,
! ' Data Management
: rOPM I Resources
| |
: Program A :
| |
| |
| |
I —OPM—L— |
| |
| |
: Program B :
| |
| |
\\ //
//FILE Activation Group -—— ™,
[|
} rILE :
| |
| PEP P1 |
: :
| |
| rILE |
| |
| UEP P2 |
| |
| |
\\ //

RV2W1039-2

Figure 3-15. Job Level Scoping. ODPs, overrides, and commitment definitions may be
scoped to the job level.

Overrides scoped to the job level influence all open file operations in the job. In
this example, override R1 could have been created by procedure P2. A job-level
override remains active until it is either explicitly deleted or the job ends. The job-
level override is the highest priority override when merging occurs. This is because
call-level overrides are merged together when multiple overrides exist on the call
stack.

Data management scoping levels may be explicitly specified by the use of scoping
parameters on override commands, commitment control commands, and through
various APIs. The complete list of data management resources that use the
scoping rules are in Chapter 10, “Data Management Scoping” on page 10-1.

3-22 AS/400 ILE Concepts V3R6

Chapter 4. Program Creation Concepts

The process for creating ILE programs or service programs gives you greater flexi-
bility and control in designing and maintaining applications. The process includes

two steps:

1. Compiling source code into modules.

2. Binding modules into an ILE program or service program. Binding occurs when
the Create Program (CRTPGM) or Create Service Program (CRTSRVPGM)

command is run.

This chapter explains concepts associated with the binder and with the process of
creating ILE programs or service programs. Before reading this chapter, you
should be familiar with the binding concepts described in Chapter 2, “ILE Basic

Concepts” on page 2-1.

© Copyright IBM Corp. 1995

Create Program and Create Service Program Commands

The Create Program (CRTPGM) and Create Service Program (CRTSRVPGM) com-
mands look similar and share many of the same parameters. Comparing the
parameters used in the two commands helps to clarify how each command can be

used.

Table 4-1 shows the commands and their parameters with the default values sup-

plied.

Table 4-1. Parameters for CRTPGM and CRTSRVPGM Commands

Parameter CRTPGM Command CRTSRVPGM Command

Group

Identification PGM(*CURLIB/WORK) SRVPGM(*CURLIB/UTILITY)
MODULE(*PGM) MODULE(*SRVPGM)

Program access =~ ENTMOD(*FIRST) EXPORT(*SRCFILE)

SRCFILE(*LIBL/QSRVSRC)
SRCMBR(*SRVPGM)

Binding BNDSRVPGM(*NONE) BNDSRVPGM(*NONE)
BNDDIR(*NONE) BNDDIR(*NONE)

Run time ACTGRP(*NEW) ACTGRP(*CALLER)

Miscellaneous OPTION(*GEN OPTION(*GEN
*NODUPPROC *NODUPPROC
*NODUPVAR *WARN *NODUPVAR *WARN
*RSLVREF) *RSLVREF)
DETAIL(*NONE) DETAIL(*NONE)
ALWUPD(*YES) ALWUPD(*YES)
ALWRINZ(*NO) ALWRINZ(*NO)
REPLACE(*YES) REPLACE(*YES)
AUT(*LIBCRTAUT) AUT(*LIBCRTAUT)
TEXT(*ENTMODTXT) TEXT(*ENTMODTXT)
TGTRLS(*CURRENT) TGTRLS(*CURRENT)
USRPRF(*USER) USRPRF(*USER)

The identification parameters for both commands name the object to be created
and the modules copied. The only difference in the two parameters is in the default

4-1

module name to use when creating the object. For CRTPGM, use the same name
for the module as is specified on the program (*PGM) parameter. For
CRTSRVPGM, use the same name for the module as is specified on the service
program (*SRVPGM) parameter. Otherwise, these parameters look and act the
same.

The most significant similarity in the two commands is how the binder resolves
symbols between the imports and exports. In both cases, the binder processes the
input from the module (MODULE), bound service program (BNDSRVPGM), and
binding directory (BNDDIR) parameters.

The most significant difference in the commands is with the program-access param-
eters (see “Program Access” on page 4-8). For the CRTPGM command, all that
needs to be identified to the binder is which module has the program entry proce-
dure. Once the program is created and a dynamic program call is made to this
program, processing starts with the module containing the program entry proce-
dure. The CRTSRVPGM command needs more program-access information
because it can supply an interface of several access points for other programs or
service programs.

Symbol Resolution
Symbol resolution is the process the binder goes through to match the following:

e The import requests from the set of modules to be bound by copy
* The set of exports provided by the specified modules and service programs

The set of exports to be used during symbol resolution can be thought of as an
ordered (sequentially numbered) list. The order of the exports is determined by the
following:

e The order in which the objects are specified on the MODULE, BNDSRVPGM,
and BNDDIR parameters of the CRTPGM or CRTSRVPGM command
* The exports from the language run-time routines of the specified modules

Resolved and Unresolved Imports
An import and export each consist of a procedure or data type and a name. An
unresolved import is one whose type and name do not yet match the type and
name of an export. A resolved import is one whose type and name exactly match
the type and name of an export.

Only the imports from the modules that are bound by copy go into the unresolved
import list. During symbol resolution, the next unresolved import is used to search
the ordered list of exports for a match. If an unresolved import exists after
checking the set of ordered exports, the program object or service program is
normally not created. However, if *UNRSLVREF is specified on the option param-
eter, a program object or service program with unresolved imports can be created.
If such a program object or service program tries to use an unresolved import at
run time, the following occurs:

* If the program object or service program was created or updated for a Version
2 Release 3 system, error message MCH3203 is issued. That message says,
“Function error in machine instruction.”

4-2 AS/400 ILE Concepts V3R6

« [f the program object or service program was created or updated for a Version
3 Release 1 system, error message MCH4439 is issued. That message says,
“Attempt to use an import that was not resolved.”

Binding by Copy
The modules specified on the MODULE parameter are always bound by copy.
Modules named in a binding directory specified by the BNDDIR parameter are
bound by copy if they are needed. A module named in a binding directory is
needed in either of the following cases:

* The module provides an export for an unresolved import
* The module provides an export named in the current export block of the binder
language source file being used to create a service program

If an export found in the binder language comes from a module object, that module
is always bound by copy, regardiess of whether it was explicitly provided on the
command line or comes from a binding directory. For example,

Module M1: imports P2
Module M2: exports P2
Module M3: exports P3
Binder language S1: STRPGMEXP PGMLVL(*CURRENT)

EXPORT P3

ENDPGMEXP
Binding directory BNDDIR1: M2

M3
CRTSRVPGM SRVPGM(MYLIB/SRV1) MODULE(MYLIB/M1) SRCFILE(MYLIB/S1)
SRCMBR(S1) BNDDIR(MYLIB/BNDDIRI)

Service program SRV1 will have three modules: M1, M2, and M3. M3 is copied
because P3 is in the current export block.

Binding by Reference
Service programs specified on the BNDSRVPGM parameter are bound by refer-
ence. If a service program named in a binding directory provides an export for an
unresolved import, that service program is bound by reference. A service program
bound in this way does not add new imports.

Importance of the Order of Exports
With only a slight change to the command, you can create a different, but poten-
tially equally valid, program. The order in which objects are specified on the
MODULE, BNDSRVPGM, and BNDDIR parameters is usually important only if both
of the following are true:

¢ Multiple modules or service programs are exporting duplicate symbol names
e Another module needs to import the symbol name

Most applications do not have duplicate symbols, and programmers seldom need to
worry about the order in which the objects are specified. For those applications
that have duplicate symbols exported that are also imported, consider the order in
which objects are listed on CRTPGM or CRTSRVPGM commands.

The following examples show how symbol resolution works. The modules, service
programs, and binding directories in Figure 4-1 on page 4-4 are used for the

Chapter 4. Program Creation Concepts ~ 4-3

CRTPGM requests in Figure 4-2 on page 4-5 and Figure 4-3 on page 4-7.
Assume that all the identified exports and imports are procedures.

The examples also show the role of binding directories in the program-creation
process. Assume that library MYLIB is in the library list for the CRTPGM and
CRTSRVPGM commands. The following command creates binding directory L in
library MYLIB:

CRTBNDDIR BNDDIR(MYLIB/L)

The following command adds the names of modules M1 and M2 and of service
programs S and T to binding directory L:

ADDBNDDIRE BNDDIR(MYLIB/L) OBJ((M1 *MODULE) (M2 *MODULE) (S) (T))

—Module M1 —— — Module M2
Export List
Import List
P20
P20
P21 .
Import List
Prints
P30
~Service Program S — ~Service Program T—
Export List Export List
P1 P30
P20 P40
P30 P21
~ Binding Directory L — " Service Program — |
QLEPRINTS
Export List
M1 *MODULE *LIBL
M2 *MODULE *LIBL Prints
S *SRVPGM *LIBL
T *SRVPGM *LIBL

RV2W1054-3

Figure 4-1. Modules, Service Programs, and Binding Directory

4-4 AS/400 ILE Concepts V3R6

Program Creation Example 1
Assume that the following command is used to create program A in Figure 4-2:

CRTPGM PGM(TEST/A)

MODULE (*LIBL/M1)
BNDSRVPGM(*LIBL/S)
BNDDIR(*LIBL/L)
OPTION(*DUPPROC)
— Program A
—Module M1 —— — Module M2
Export List
Import List
P20
P20
P21 .
Import List
Prints
P30
rService Program S — ~Service Program T—
Export List Export List
P1 P30
P20 P40
P30 P21
- Binding Directory L — [Service Program ™|
QLEPRINTS
Export List
M1 *MODULE *LIBL

M2 *MODULE *LIBL Prints

S *SRVPGM *LIBL
T *SRVPGM *LIBL

A

RV2W1049-4
Figure 4-2. Symbol Resolution and Program Creation: Example 1
To create program A, the binder processes objects specified on the CRTPGM
command parameters in the order specified:

1. The value specified on the first parameter (PGM) is A, which is the name of the
program to be created.

Chapter 4. Program Creation Concepts 4-5

2. The value specified on the second parameter (module) is M1. The binder
starts there. Module M1 contains three imports that need to be resolved: P20,
P21, and Prints.

3. The value specified on the third parameter (BNDSRVPGM) is S. The binder
scans the export list of service program S for any procedures that resolve any
unresolved import requests. Because the export list contains procedure P20,
that import request is resolved.

4. The value specified on the fourth parameter (BNDDIR) is L. The binder next
scans binding directory L.

a. The first object specified in the binding directory is module M1. Module M1
is currently known because it was specified on the module parameter, but it
does not provide any exports.

b. The second object specified in the binding directory is module M2. Module
M2 provides exports, but none of them match any currently unresolved
import requests (P21 and Prints).

c. The third object specified in the binding directory is service program S.
Service program S was already processed in step 3 and does not provide
any additional exports.

d. The fourth object specified in the binding directory is service program T.
The binder scans the export iist of service program T. Procedure P21 is
found, which resolves that import request.

5. The final import that needs to be resolved (Prints) is not specified on any
parameter. Nevertheless, the binder finds the Prints procedure in the export list
of service program QLEPRINTS, which is a common run-time routine provided
by the compiler in this example. When compiling a module, the compiler speci-
fies as the default the binding directory containing its own run-time service pro-
grams and the ILE run-time service programs. That is how the binder knows
that it should look for any remaining unresolved references in the run-time
service programs provided by the compiler. If, after the binder looks in the run-
time service programs, there are references that cannot be resolved, the bind
normally fails. However, if you specify OPTION(*UNRSLVREF) on the create
command, the program is created.

4-6 AS/400 ILE Concepts V3R6

Program Creation Example 2
Figure 4-3 shows the result of a similar CRTPGM request, except that the service
program on the BNDSRVPGM parameter has been removed:

CRTPGM PGM(TEST/A)

MODULE (*LIBL/M1)
BNDDIR(*LIBL/L)
OPTION(*DUPPROC)
—— Program A
—Module M1 — Module M2
Import List Export List
P20 —I‘ P20
P21
Prints Import List
P30
rService Program S — rService Program T—
Export List Export List
(EAPTIL RIS =XPOR ISt
P1 P30 <
P20 P40
P30 P21
r Binding Directory L— [Service Program |
QLEPRINTS
Export List
M; *MODULE *LIBL
*MODULE *LIBL I BN ;
S *SRVPGM *LIBL Prints

T *SRVPGM *LIBL

RV2W1050-3

Figure 4-3. Symbol Resolution and Program Creation: Example 2

The change in ordering of the objects to be processed changes the ordering of the
exports. It also results in the creation of a program that is different from the
program created in example 1. Because service program S is not specified on the
BNDSRVPGM parameter of the CRTPGM command, the binding directory is proc-
essed. Module M2 exports procedure P20 and is specified in the binding directory
ahead of service program S. Therefore, module M2 gets copied to the resulting

Chapter 4. Program Creation Concepts 4-7

program object in this example. When you compare Figure 4-2 on page 4-5 with
Figure 4-3 you see the following:

¢ Program A in example 1 contains only module M1 and uses procedures from
service programs S, T, and QLEPRINTS.

* In program A of example 2, two modules called M1 and M2 use service pro-
grams T and QLEPRINTS.

The program in example 2 is created as follows:
1. The first parameter (PGM) specifies the name of the program to be created.

2. The value specified on the second parameter (MODULE) is M1, so the binder
again starts there. Module M1 contains the same three imports that need to be
resolved: P20, P21, and Prints.

3. This time, the third parameter specified is not BNDSRVPGM. It is BNDDIR.
Therefore, the binder first scans the binding directory specified (L).

a. The first entry specified in the binding directory is module M1. Module M1
from this library was already processed by the moduie parameter.

b. The second entry specified in the binding directory is for module M2. The
binder scans the export list of module M2. Because that export list con-
tains P20, that import request is resolved. Module M2 is bound by copy
and its imports must be added {0 the list of unresolved impoit requests for
processing. The unresolved import requests are now P21, Prints, and P30.

¢. Processing continues to the next object specified in the binding directory,
which is service program S. In this case, service program S does not
provide any exports for currently unresolved import requests. Processing
continues to the next object listed in the binding directory.

4. Service program T provides exports P21 and P30 for the unresolved imports.

5. As in example 1, import request Prints is not specified. However, the proce-
dure is found in the run-time routines provided by the language in which
module M1 was written.

Symbol resolution is also affected by the strength of the exports. For information
about strong and weak exports, see Export in “Binder Information Listing for
Example Service Program” on page A-7.

Program Access

When you create an ILE program object or service program object, you need to
specify how other programs can access that program. On the CRTPGM command,
you do so with the entry module (ENTMOD) parameter. On the CRTSRVPGM
command, you do so with the export (EXPORT) parameter (see Table 4-1 on

page 4-1).

Entry Module Parameter on the CRTPGM Command

The entry module (ENTMOD) parameter tells the binder the name of the module in
which the following are located:

Program entry procedure (PEP)
User entry procedure (UEP)

4-8 AS/400 ILE Concepts V3R6

This information identifies which module contains the PEP that gets control when a
dynamic call is made to the program being created.

The default value for the ENTMOD parameter is *FIRST. This value specifies that
the binder uses as the entry module the first module it finds in the list of modules
specified on the module parameter that contains a PEP.

If the following conditions exist:

*FIRST is specified on the ENTMOD parameter
A second module with a PEP is encountered

the binder copies this second module into the program object and continues the
binding process. The binder ignores the additional PEP.

If *ONLY is specified on the ENTMOD parameter, only one module in the program
can contain a PEP. If *ONLY is specified and a second module with a PEP is
encountered, the object is not created.

For explicit control, you can specify the name of the module that contains the PEP.
Any other PEPs are ignored. If the module explicitly specified does not contain a
PEP, the CRTPGM request fails.

To see whether a module has a program entry procedure, you use the display
module (DSPMOD) command. The information appears in the Program entry pro-
cedure name field of the Display Module Information display. If *NONE is specified
in the field, this module does not have a PEP. If a name is specified in the field,
this module has a PEP.

Export Parameter on the CRTSRVPGM Command

The export (EXPORT), source file (SRCFILE), and source member (SRCMBR)
parameters identify the public interface to the service program being created. The
parameters specify the exports (procedures and data) that a service program
makes available for use by other ILE programs or service programs.

The default value for the export parameter is *SRCFILE. That value directs the
binder to the SRCFILE parameter for a reference to information about exports of
the service program. This additional information is a source file with binder lan-
guage source in it (see “Binder Language” on page 4-11). The binder locates the
binder language source and, from the specified names to be exported, generates
one or more signatures. The binder language also allows you to specify a signa-
ture of your choice instead of having the binder generate one.

The Retrieve Binder Source (RTVBNDSRC) command can be used to create a
source file that contains binder language source based on exports from a module
or from a set of modules. The file created by the RTVBNDSRC command contains
all symbols eligible to be exported from the modules, specified in the binder lan-
guage syntax. You can edit this file to include only the symbols you want to export,
then specify this file on the SRCFILE parameter of the CRTSRVPGM command.

The other possible value for the export parameter is *“ALL. When EXPORT(*ALL)
is specified, all of the symbols exported from the copied modules are exported from
the service program. The signature that gets generated is determined by the fol-
lowing:

e The number of exported symbols

Chapter 4. Program Creation Concepts ~ 4-9

» Alphabetical order of exported symbols

If EXPORT(*ALL) is specified, no binder language is needed to define the exports
from a service program. This value is the easiest one to use because you do not
have to generate the binder language source. However, a service program with
EXPORT(*ALL) specified can be difficult to update or correct once the exports are
used by other programs. If the service program is changed, the order or number of
exports could change. Therefore, the signature of that service program could
change. If the signature changes, all programs or service programs that use the
changed service program have to be re-created.

EXPORT(*ALL) indicates that all symbols exported from the modules used in the
service program are exported from the service program. ILE C/400 can define
exports as global or static. Only external variables declared in ILE C/400 as global
are available with EXPORT(*ALL). In ILE RPG/400, the following are available with
EXPORT(*ALL):

» The RPG program name (not to be confused with *PGM object)
e Variables defined with the keyword EXPORT

In ILE COBOL/400, the following language elements are module exports:

e The name in the PROGRAM-ID paragraph in the lexically outermost COBOL
program (not to be confused with *PGM object) of a compilation unit. This
maps to a strong procedure export.

e The COBOL compiler-generated name derived from the name in the
PROGRAM-ID paragraph in the preceding bullet if that program does not have
the INITIAL attribute. This maps to a strong procedure export. For information
about strong and weak exports, see Export in “Binder Information Listing for
Example Service Program” on page A-7.

» Any data item or file item declared as EXTERNAL. This maps to a weak
export.

Export Parameter Used with Source File and Source Member
Parameters

The default value on the export parameter is *SRCFILE. If *SRCFILE is specified
on the export parameter, the binder must also use the SRCFILE and SRCMBR
parameters to locate the binder language source.

The following example command binds a service program named UTILITY by using
the defaults to locate the binder language source:

CRTSRVPGM SRVPGM(*CURLIB/UTILITY)
MODULE (*SRVPGM)
EXPORT (*SRCFILE)
SRCFILE(*LIBL/QSRVSRC)
SRCMBR(*SRVPGM)

For this command to create the service program, a member named UTILITY must
be in the source file QSRVSRC. This member must then contain the binder lan-
guage source that the binder translates into a signature and set of export identi-
fiers. The default is to get the binder language source from a member with the
same name as the name of the service program, UTILITY. If a file, member, or
binder language source with the values supplied on these parameters is not
located, the service program is not created.

4-10 AS/400 ILE Concepts V3R6

Binder Language

Signature

The binder language is a small set of nonrunnable commands that defines the
exports for a service program. The binder language enables the source entry utility
(SEU) syntax checker to prompt and validate the input when a BND source type is
specified.

The binder language consists of a list of the following commands:

1. Start Program Export (STRPGMEXP) command, which identifies the beginning
of a list of exports from a service program

2. Export Symbol (EXPORT) commands, each of which identifies a symbol name
available to be exported from a service program

3. End Program Export (ENDPGMEXP) command, which identifies the end of a
list of exports from a service program

Figure 4-4 is a sample of the binder language in a source file:
STRPGMEXP PGMLVL (*CURRENT) LVLCHK(*YES)
EXPORT SYMBOL(p1)

EXPORT SYMBOL('p2')
EXPORT SYMBOL('P3')

ENDPGMEXP

STRPGMEXP ~ PGMLVL (*PRV)

EXPORT SYMBOL (p1)
EXPORT SYMBOL('p2')

ENDPGMEXP

Figure 4-4. Example of Binder Language in a Source File

The Retrieve Binder Source (RTVBNDSRC) command can be used to help gen-
erate the binder language source based on exports from one or more modules.

The symbols identified between a STRPGMEXP PGMLVL(*CURRENT) and
ENDPGMEXP pair define the public interface to a service program. That public
interface is represented by a signature. A signature is a value that identifies the
interface supported by a service program.

If you choose not to specify an explicit signature, the binder generates a signature

from the list of procedure and data item names to be exported and from the order
in which they are specified. Therefore, a signature provides an easy and conven-

Chapter 4. Program Creation Concepts 4-11

ient way to validate the public interface to a service program. A signature does not
validate the interface to a particular procedure within a service program.

Start Program Export and End Program Export Commands
The Start Program Export (STRPGMEXP) command identifies the beginning of a
list of exports from a service program. The End Program Export (ENDPGMEXP)
command identifies the end of a list of exports from a service program.

Multiple STRPGMEXP and ENDPGMEXP pairs specified within a source file cause
multiple signatures to be created. The order in which the STRPGMEXP and
ENDPGMEXP pairs occur is not significant.

Program Level Parameter on the STRPGMEXP Command

Only one STRPGMEXP command can specify PGMLVL(*CURRENT), but it does
not have to be the first STRPGMEXP command. All other STRPGMEXP com-
mands within a source file must specify PGMLVL(*PRV). The current signature
represents whichever STRPGMEXP command has PGMLVL(*CURRENT) speci-
fied. If more than one of the STRPGMEXP commands is marked *CURRENT, the
first one is assumed to be the current one. That command is represented by the
current signature.

I avsal MAlaaanls
Level Check Parameter on the STRPGMEXP Command

The level check (LVLCHK) parameter on the STRPGMEXP command specifies
whether the binder should automatically check the public interface to a service
program. Specifying LVLCHK(*YES), or letting the value default to LVLCHK(*YES),
causes the binder to examine the signature parameter. The signature parameter
determines whether the binder uses an explicit signature value or generates a
nonzero signature value. If the binder generates a signature value, the system ver-
ifies that the value matches the value known to the service program’s clients. If the
values match, clients of the service program can use the public interface without
being recompiled.

Specifying LVLCHK(*NO) disables the automatic signature checking. You may
decide to use this feature if the following conditions exist:

« You know that certain changes to the interface of a service program do not
constitute incompatibilities.

* You want to avoid updating the binder language source file or recompiling
clients.

Use the LVLCHK(*NO) value with caution because it means that you are respon-
sible for manually verifying that the public interface is compatible with previous
levels. Specify LVLCHK(*NO) only if you can control which procedures of the
service program are called and which variables are used by its clients. If you
cannot control the public interface, run-time or activation errors may occur. See
“Binder Language Errors” on page A-9 for an explanation of the common errors
that could occur from using the binder language.

4-12 AS/400 ILE Concepts V3R6

Signature Parameter on the STRPGMEXP Command

The signature (SIGNATURE) parameter allows you to explicitly specify a signature
for a service program. The explicit signature can be a hexadecimal string or a
character string. You may want to consider explicitly specifying a signature for
either of the following reasons:

* The binder could generate a compatible signature that you do not want. A sig-
nature is based on the names of the specified exports and on their order.
Therefore, if two export blocks have the same exports in the same order, they
have the same signature. As the service program provider, you may know that
the two interfaces are not compatible (because, for example, their parameter
lists are different). In this case, you can explicitly specify a new signature
instead of having the binder generate the compatible signature. If you do so,
you create an incompatibility in your service program, forcing some or all clients
to recompile.

» The binder could generate an incompatible signature that you do not want. If
two export blocks have different exports or a different order, they have different
signatures. If, as the service program provider, you know that the two inter-
faces are really compatible (because, for example, a function name has
changed but it is still the same function), you can explicitly specify the same
signature as previously generated by the binder instead of having the binder
generate an incompatible signature. If you specify the same signature, you
maintain a compatibility in your service program, allowing your clients to use
your service program without rebinding.

The default value for the signature parameter, *GEN, causes the binder to generate

You can determine the signature value for a service program by using the Display
Service Program (DSPSRVPGM) command and specifying DETAIL(*SIGNATURE).

Export Symbol Command

The Export Symbol (EXPORT) command identifies a symbol name available to be
exported from a service program.

If the exported symbols contain lowercase letters, the symbol name should be
enclosed within apostrophes as in Figure 4-4 on page 4-11. If apostrophes are not
used, the symbol name is converted to all uppercase letters. In the example, the
binder searches for an export named P1, not p1.

Symbol hames can also be exported through the use of wildcard characters (<<< or
>>>). If a symbol name exists and matches the wildcard specified, the symbol
name is exported. If any of the following conditions exists, an error is signaled and
the service program is not created:

¢ No symbol name matches the wildcard specified
* More than one symbol name matches the wildcard specified
* A symbol name matches the wildcard specified but is not available for export

Substrings in the wildcard specification must be enclosed within quotation marks.
Signatures are determined by the characters in wildcard specifications. Changing

the wildcard specification changes the signature even if the changed wildcard spec-
ification matches the same export. For example, the two wildcard specifications

Chapter 4. Program Creation Concepts 4-13

“r">>> and “ra”>>> both export the symbol “rate” but they create two different signa-
tures. Therefore, it is strongly recommended that you use a wildcard specification
that is as similar to the export symbol as possible.

Wildcard Export Symbol Examples
For the following examples, assume that the symbol list of possible exports consists

of:

interest_rate
international
prime_rate

The following examples show which export is chosen or why an error occurs:

EXPORT SYMBOL (“interest”>>>)
Exports the symbol “interest_rate” because it is the only symbol that
begins with “interest.”

EXPORT SYMBOL (“I">>>“rate”>>>)
Exports the symbol “interest_rate” because it is the only symbol that
begins with “i” and subsequently contains “rate.”

EXPORT SYMBOL (<<<"I">>>"rate”)
Results in a “Multiple matches for wildcard specification” error. Both

“rate.”

EXPORT SYMBOL (“inter’>>>“prime”)
Results in a “No matches for wildcard specification” error. No symbol
ha

. . ”
1 1
MOYIHIS Wil g

H 13) H 13 H
ns with “inter” and subsequently ends in “prime.

EXPORT SYMBOL (<<<)
Results in a “Multiple matches for wildcard specification” error. This
symbol matches all three symbols and therefore is not valid. An export
statement can result in only one exported symbol.

Binder Language Examples

As an example of using the binder language, assume that you are developing a
simple financial application with the following procedures:

¢ Rate procedure

Calculates an Interest_Rate, given the values of Loan_Amount,
Term_of_Payment, and Payment_Amount.

e Amount procedure

Calculates the Loan_Amount, given the values of Interest_Rate,
Term_of_Payment, and Payment_Amount.

e Payment procedure

Calculates the Payment_Amount, given the values of Interest_Rate,
Term_of_Payment, and Loan_Amount.

e Term procedure

Calculates the Term_of_Payment, given the values of Interest_Rate,
Loan_Amount, and Payment_Amount.

4-14 AS/400 ILE Concepts V3R6

Some of the output listings for this application are shown in Appendix A, “Output
Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command” on
page A-1.

In the binder language examples, each module contains more than one procedure.
This structure is more typical of ILE C/400 than of ILE RPG/400, but the examples
apply even to modules that contain only one procedure.

Binder Language Example 1
The binder language for the Rate, Amount, Payment, and Term procedures looks
like the following:

FILE: MYLIB/QSRVSRC MEMBER: FINANCIAL

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL('Term')
EXPORT SYMBOL('Rate')
EXPORT SYMBOL('Amount')
EXPORT SYMBOL('Payment')

ENDPGMEXP

Some initial design decisions have been made, and three modules (MONEY,
RATES, and CALCS) provide the necessary procedures.

To create the service program pictured in Figure 4-5 on page 4-16, the binder lan-
guage is specified on the following CRTSRVPGM command:
CRTSRVPGM SRVPGM(MYLIB/FINANCIAL)

MNANIT E/MVI TR /MANECY MVI TR /DATCC
FIVUULEC\PMTLLID/IMIVNCT MITLLID/RAILO

EXPORT (*SRCFILE)
SRCFILE(MYLIB/QSRVSRC)
SRCMBR (*SRVPGM)

Note that source file QSRVSRC in library MYLIB, specified in the SRCFILE param-
eter, is the file that contains the binder language source.

Also note that no binding directory is needed because all the modules needed to
create the service program are specified on the MODULE parameter.

Chapter 4. Program Creation Concepts 4-15

_Service Program
MYLIB/FINANCIAL

Term

Rate

Amount

Payment

—Module MONEY —

Procedure Amount
Procedure Payment

— Module RATES —

Procedure Term
Procedure Rate

—Module CALCS —
DuanmnaAiiva MAI M4
riovcuuic vAaLuv |

Procedure CALC2

Current Signature = Sig 123

RV2W1051-3

Figure 4-5. Creating a Service Program by Using the Binder Language

Binder Language Example 2

As progress is made in developing the application, a program called BANKER is
written. BANKER needs to use the procedure called Payment in the service
program called FINANCIAL. The resulting application with the BANKER program is
shown in Figure 4-6 on page 4-17.

4-16 AS/400 ILE Concepts V3R6

_ - — Service Program____
Program BANKER MYLIB/FINANCIAL

» Term

Rate
Module M1 —— Amount
CallPrc Payment » Payment

— Module MONEY
Procedure Amount
Procedure Payment

— Module RATES —

MYLIB/FINANCIAL Procedure Term

Procedure Rate
Payment = 4th slot

Signature = Sig 123 [~ Module CALCS —

Procedure CALC1
Procedure CALC2

Current Signature = Sig 123

RV2W1053-4

Figure 4-6. Using the Service Program FINANCIAL

When the BANKER program was created, the MYLIB/FINANCIAL service program
was provided on the BNDSRVPGM parameter. The symbol Payment was found to
be exported from the fourth slot of the public interface of the FINANCIAL service
program. The current signature of MYLIB/FINANCIAL along with the slot associ-
ated with the Payment interface is saved with the BANKER program.

During the process of getting BANKER ready to run, activation verifies the fol-
lowing:

* Service program FINANCIAL in library MYLIB can be found.
* The service program still supports the signature (SIG 123) saved in BANKER.

This signature checking verifies that the public interface used by BANKER when it
was created is still valid at run time.

As shown in Figure 4-6, at the time BANKER gets called, MYLIB/FINANCIAL still
supports the public interface used by BANKER. If activation cannot find either a
matching signature in MYLIB/FINANCIAL or the service program
MYLIB/FINANCIAL, the following occurs:

BANKER fails to get activated.
An error message is issued.

Chapter 4. Program Creation Concepts 4-17

Binder Language Example 3

As the application continues to grow, two new procedures are needed to complete
our financial package. The two new procedures, OpenAccount and CloseAccount,
open and close the accounts, respectively. The following steps need to be per-
formed to update MYLIB/FINANCIAL such that the program BANKER does not
need to be re-created:

1. Write the procedures OpenAccount and CloseAccount.
2. Update the binder language to specify the new procedures.

The updated binder language supports the new procedures. It also allows the
existing ILE programs or service programs that use the FINANCIAL service
program to remain unchanged. The binder language looks like this:

FILE: MYLIB/QSRVSRC MEMBER: FINANCIAL

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL('Term')
EXPORT SYMBOL('Rate')
EXPORT SYMBOL('Amount')
EXPORT SYMBOL ('Payment')
EXPORT SYMBOL('OpenAccount')
EXPORT SYMBOL('CloseAccount')
ENDPGMEXP

STRPGMEXP PGMLVL (*PRV)
EXPORT SYMBOL('Term')
EXPORT SYMBOL('Rate')
EXPORT SYMBOL('Amount"')
EXPORT SYMBOL('Payment')

ENDPGMEXP

When an update operation to a service program is needed to do both of the fol-
lowing:

e Support new procedures or data items
» Allow the existing programs and service programs that use the changed service
program to remain unchanged

one of two alternatives must be chosen. The first alternative is to perform the fol-
lowing steps:

1. Duplicate the STRPGMEXP, ENDPGMEXP block that contains
PGMLVL(*CURRENT).

2. Change the duplicated PGMLVL(*CURRENT) value to PGMLVL(*PRYV).

3. In the STRPGMEXP command that contains PGMLVL(*CURRENT), add to the

end of the list the new procedures or data items to be exported.

. Save the changes to the source file.

. Create or re-create the new or changed modules.

6. Create the service program from the new or changed modules by using the
updated binder language.

[20N

The second alternative is to take advantage of the signature parameter on the
STRPGMEXP command and to add new symbols at the end of the export block:

4-18 AS/400 ILE Concepts V3R6

STRPGMEXP PGMVAL (*CURRENT) SIGNATURE('123')
EXPORT SYMBOL('Term')

EXPORT SYMBOL('OpenAccount')
EXPORT SYMBOL('CloseAccount')
ENDPGMEXP

To create the enhanced service program shown in Figure 4-7, the updated binder
language specified on page 4-18 is used on the following CRTSRVPGM command:

CRTSRVPGM SRVPGM(MYLIB/FINANCIAL)
MODULE (MYLIB/MONEY MYLIB/RATES MYLIB/CALCS MYLIB/ACCOUNTS))
EXPORT (*SRCFILE)
SRCFILE (MYLIB/QSRVSRC)
SRCMBR (*SRVPGM)

r Program BANKER — —Service Program
MYLIB/FINANCIAL

» Term

Rate

Module M1 —— Amount

CallPrc Payment Payment

OpenAccount

CloseAccount

—Module Money —] [~ Module CALCS]
Procedure Procedure
Amount CALCAH
Procedure Procedure
MYLIB/FINANCIAL Payment CALC2
Payment = 4th slot - — Module _
St - Sia 123 —Module RATES ACCOUNTS
gnature = Sig Procedure Procedure
Term OpenAccount
Procedure Procedure
Rate CloseAccount

Current Signature = Sig 456
Previous Signature = Sig 123

RV2W1052-4
Figure 4-7. Updating a Service Program by Using the Binder Language
The BANKER program does not have to change because the previous signature is

still supported. (See the previous signature in the service program
MYLIB/FINANCIAL and the signature saved in BANKER.) If BANKER were re-

Chapter 4. Program Creation Concepts 4-19

created by the CRTPGM command, the signature that is saved with BANKER
would be the current signature of service program FINANCIAL. The only reason to
re-create the program BANKER is if the program used one of the new procedures
provided by the service program FINANCIAL. The binder language allows you to
enhance the service program without changing the programs or service programs
that use the changed service program.

Binder Language Example 4
After shipping the updated FINANCIAL service program, you receive a request to
create an interest rate based on the following:

The current parameters of the Rate procedure
The credit history of the applicant

A fifth parameter, called Credit_History, must be added on the call to the Rate pro-
cedure. Credit_History updates the Interest_Rate parameter that gets returned
from the Rate procedure. Another requirement is that existing ILE programs or
service programs that use the FINANCIAL service program must not have to be
changed. If the language does not support passing a variable number of parame-
ters, it seems difficult to do both of the following:

¢ Update the service program
» Avoid re-creating all the other objects that use the FINANCIAL service program

Fortunately, however, there is a way to do this. The following binder language sup-
ports the updated Rate procedure. It still allows existing ILE programs or service
programs that use the FINANCIAL service program to remain unchanged.

FILE: MYLIB/QSRVSRC MEMBER: FINANCIAL

STRPGMEXP PGMLVL (*CURRENT)

EXPORT SYMBOL('Term')

EXPORT SYMBOL('O1d_Rate') /* Original Rate procedure with four parameters =/

EXPORT SYMBOL('Amount')

EXPORT SYMBOL('Payment')

EXPORT SYMBOL ('OpenAccount')

EXPORT SYMBOL('CloseAccount')

EXPORT SYMBOL('Rate') /* New Rate procedure that supports +

a fifth parameter, Credit History */

ENDPGMEXP

STRPGMEXP PGMLVL (*PRV)
EXPORT SYMBOL('Term')
EXPORT SYMBOL('Rate')
EXPORT SYMBOL('Amount')
EXPORT SYMBOL('Payment')
EXPORT SYMBOL('OpenAccount')
EXPORT SYMBOL('CloseAccount')
ENDPGMEXP

STRPGMEXP PGMLVL (*PRV)
EXPORT SYMBOL('Term')
EXPORT SYMBOL('Rate')
EXPORT SYMBOL('Amount')
EXPORT SYMBOL('Payment')

ENDPGMEXP

4-20 AS/400 ILE Concepts V3R6

The original symbol Rate was renamed Old_Rate but remains in the same relative
position of symbols to be exported. This is important to remember.

A comment is associated with the Old_Rate symbol. A comment is everything
between /* and */. The binder ignores comments in the binder language source
when creating a service program.

The new procedure Rate, which supports the additional parameter of
Credit_History, must also be exported. This updated procedure is added to the end
of the list of exports.

The following two ways can deal with the original Rate procedure:

¢ Rename the original Rate procedure that supports four parameters as
Old_Rate. Duplicate the Old_Rate procedure (calling it Rate). Update the
code to support the fifth parameter of Credit_History.

¢ Update the original Rate procedure to support the fifth parameter of
Credit_History. Create a new procedure called Old_Rate. Old_Rate supports
the original four parameters of Rate. It also calls the new updated Rate proce-
dure with a dummy fifth parameter. ‘

This is the preferred method because maintenance is simpler and the size of
the object is smaller.

Using the updated binder language and a new RATES module that supports the
procedures Rate, Term, and Old_Rate, you create the following FINANCIAL service
program:

Chapter 4. Program Creation Concepts ~ 4-21

— Service Program MYLIB/FINANCIAL

» Term
Old_Rate
Amount
Payment
OpenAccount
CloseAccount
Rate
—Module MONEY— —Module CALCS —
Procedure Procedure
Broacmount ~ T CALCH
Payment Frocedui® oo
— — ~—Module _
Module RATES ACCOUNTS
Procedure
b Tedrm Proc(:sadure
roceaure penAccount
Procaate Procedure
Rate CloseAccount

Current Signature = Sig 789
Previous Signatures = Sig 456, Sig 123

RV2W1055-2

Figure 4-8. Updating a Service Program by Using the Binder Language

The ILE programs and service programs that use the original Rate procedure of the
FINANCIAL service program go to slot 2. This directs the call to the Old_Rate
procedure, which is advantageous because Old_Rate handles the original four
parameters. If any of the ILE programs or service programs that used the original
Rate procedure need to be re-created, do one of the following:

* To continue to use the original four-parameter Rate procedure, call the
Old_Rate procedure instead of the Rate procedure.

* To use the new Rate procedure, add the fifth parameter, Credit_History, to
each call to the Rate procedure.

When an update to a service program must meet the following requirements:

e Support a procedure that changed the number of parameters it can process
» Allow existing programs and service programs that use the changed service
program to remain unchanged

the following steps need to be performed:

4-22 AS/400 ILE Concepts V3R6

1. Duplicate the STRPGMEXP, ENDPGMEXP block that contains
PGMLVL(*CURRENT).

2. Change the duplicated PGMLVL(*CURRENT) value to PGMLVL(*PRV).

3. In the STRPGMEXP command that contains PGMLVL(*CURRENT), rename
the original procedure name, but leave it in the same relative position.

In this example, Rate was changed to Old_Rate but left in the same relative
position in the list of symbols to be exported.

4. In the STRPGMEXP command that has PGMLVL(*CURRENT), place the ori-
ginal procedure name at the end of the list that supports a different number of
parameters.

In this example, Rate is added to the end of the list of exported symbols, but
this Rate procedure supports the additional parameter Credit_History.

5. Save the changes to the binder language source file.

6. In the file containing the source code, enhance the original procedure to
support the new parameter.

In the example, this means changing the existing Rate procedure to support the
fifth parameter of Credit_History.

7. A new procedure is created that handles the original parameters as input and
calls the new procedure with a dummy extra parameter.

In the example, this means adding the Old_Rate procedure that handles the
original parameters and calling the new Rate procedure with a dummy fifth
parameter.

8. Save the binder language source code changes.
9. Create the module objects with the new and changed procedures.

10. Create the service program from the new and changed modules using the
updated binder language.

Program Updates

After an ILE program object or service program is created, you may have to correct
an error in it or add an enhancement to it. However, after you service the object, it
may be so large that shipping the entire object to your customers is difficult or
expensive.

You can reduce the shipment size by using the Update Program (UPDPGM) or

Update Service Program (UPDSRVPGM) command. These commands replace’
only the specified modules, and only the changed or added modules have to be
shipped to your customers.

For example, Figure 4-9 on page 4-24 shows module MONEY being replaced in
service program MYLIB/FINANCIAL:

Chapter 4. Program Creation Concepts 4-23

‘ — Service Program MYLIB/FINANCIAL

Term

\ 4

Old_Rate

Amount

Payment

OpenAccount

CloseAccount

Rate

Module MONEY

Procedure
Amount — Module CALCS —
P ent Proce
rocedure
b CALC1
rocedure
ALC2
_ — — Module —
Module RATES ACCOUNTS
Procedure
Term Procedure
F’ro%eldc;v'rg ‘ OpenAccount
ate
— Procedure
Procﬁg{‘ge CloseAccount
Current Signature = Sig 789
Previous Signatures = Sig 456, Sig 123

RV3W105-0

Figure 4-9. Replacing a Module in a Service Program

Occasionally, the same module is bound into multiple program objects or service
programs. If you use the PTF process, an exit program containing one or more
calls to the UPDPGM or UPDSRVPGM command may complete the service
package.

The allow update (ALWUPD) parameter on the CRTPGM or CRTSRVPGM
command determines whether a program object or service program can be
updated. If ALWUPD(*NO) is specified, the modules in a program object or service
program cannot be replaced by the UPDPGM or UPDSRVPGM command.

Important Parameters on the UPDPGM and UPDSRVPGM Commands

Each module specified on the module parameter replaces a module with the same
name that is bound into a program object or service program. If more than one
module bound into a program object or service program has the same name, the
replacement library (RPLLIB) parameter is used. This parameter specifies which
method is used to select the module to be replaced. If no module with the same

4-24 AS/400 ILE Concepts V3R6

name is already bound into a program object or service program, the program
object or service program is not updated.

The bound service program (BNDSRVPGM) parameter specifies additional service
programs beyond those that the program object or service program is already
bound to. If a replacing module contains more imports or fewer exports than the
module it replaces, these service programs may be needed to resolve those
imports.

The binding directory (BNDDIR) parameter specifies binding directories that contain
modules or service programs that also may be required to resolve extra imports.

Module Replaced by a Module with Fewer Imports
If a module is replaced by another module with fewer imports, the new program
object or service program is always created. However, the updated program object
or service program contains an isolated module if the following conditions exist:

» Because of the now missing imports, one of the modules bound into a program
object or service program no longer resolves any imports

» That module originally came from a binding directory used on the CRTPGM or
CRTSRVPGM command

Programs with isolated modules may grow significantly over time. To remove
modules that no longer resolve any imports and that originally came from a binding
directory, you can specify OPTION(*TRIM) when updating the objects. However, if
you use this option, the exports that the modules contain are not available for future
program updates.

Module Replaced by a Module with More Imports
If a module is replaced by a module with more imports, the program object or
service program can be updated if those extra imports are resolved, given the fol-
lowing:

* The existing set of modules bound into the object.

s Service programs bound to the object.

« Binding directories specified on the command. If a module in one of these
binding directories contains a required export, the module is added to the
program or service program. If a service program in one of these binding direc-
tories contains a required export, the service program is bound by reference to
the program or service program.

 Implicit binding directories. An implicit binding directory is a binding directory
that contains exports that may be needed to create a program that contains the
module. Every ILE compiler builds a list of implicit binding directories into each
module it creates.

If those extra imports cannot be resolved, the update operation fails unless
OPTION(*UNRSLVREF) is specified on the update command.

Module Replaced by a Module with Fewer Exports

If a module is replaced by another module with fewer exports, the update occurs if
the following conditions exist: '

* The missing exports are not needed for binding.

Chapter 4. Program Creation Concepts 4-25

* The missing exports are not exported out of the service program in the case of
UPDSRVPGM. The service program export is different if EXPORT(*ALL) is
specified.

The update does not occur if the following conditions exist:

e Some imports cannot be resolved because of the missing exports.

* Those missing exports cannot be found from the extra service programs and
binding directories specified on the command.

e The binder language indicates to export a symbol, but the export is missing.

Module Replaced by a Module with More Exports
If a module is replaced by another module with more exports, the update operation
occurs if all the extra exports are uniquely named. The service program export is
different if EXPORT(*ALL) is specified.

However, if one or more of the extra exports are not uniquely named, the duplicate
names may cause a problem:

o If OPTION(*NODUPPROC) or OPTION(*NODUPVAR) is specified on the
update command, the program object or service program is not updated.

o If OPTION(*DUPPROC) or OPTION(*DUPVAR) is specified, the update occurs,
the module being replaced was specified on the CRTPGM or CRTSRVPGM
command before the object that contains the selected export, the selected
export is selected. (If the data item is weak, it still may not be selected.)

Tips for Creating Modules, Programs, and Service Programs

To create and maintain modules, ILE programs, and service programs conveniently,
consider the following:

* Follow a naming convention for the modules that will get copied to create a
program or service program.

A naming strategy with a common prefix makes it easier to specify modules
generically on the module parameter.

* For ease of maintenance, include each module in only one program or service
program. [f more than one program needs to use a module, put the module in
a service program. That way, if you have to redesign a module, you only have
to redesign it in one place.

* To ensure your signature, use the binder language whenever you create a
service program.

The binder language al'lows the service program to be easily updated without
having to re-create the using programs and service programs.

The Retrieve Binder Source (RTVBNDSRC) command can be used to help
generate the binder language source based on exports from one or more
modules.

If either of the following conditions exists:

— A service program will never change
— Users of the service program do not mind changing their programs when a
signature changes

4-26 AS/400 ILE Concepts V3R6

you do not need to use the binder language. Because this situation is not likely
for most applications, consider using the binder language for all service pro-
grams.

If other people will use a program object or service program that you create,
specify OPTION(*RSLVREF) when you create it. When you are developing an
application, you may want to create a program object or service program with
unresolved imports. However, when in production, all the imports should be
resolved.

If OPTION(*WARN) is specified, unresolved references are listed in the job log
that contains the CRTPGM or CRTSRVPGM request. If you specify a listing on
the DETAIL parameter, they are also included on the program listing. You
should keep the job log or listing.

When designing new applications, determine if common procedures that should
go into one or more service programs can be identified.

It is probably easiest to identify and design common procedures for new appli-
cations. If you are converting an existing application to use ILE, it may be
more difficult to determine common procedures for a service program. Never-
theless, try to identify common procedures needed by the application and try to
create service programs containing the common procedures.

When converting an existing application to ILE, consider creating a few large
programs.

With a few, usually minor changes, you can easily convert an existing applica-
tion to take advantage of the ILE capabilities. After you create the modules,
combining them into a few large programs may be the easiest and least expen-
sive way to convert to ILE.

Using a few large programs rather than many small programs has the addi-
tional advantage of using less storage.

Try to limit the number of service programs your application uses.

This may require a service program to be created from more than one module.
The advantages are a faster activation time and a faster binding process.

There are very few right answers for the number of service programs an appli-
cation should use. If a program uses hundreds of service programs, it is prob-
ably using too many. On the other hand, one service program may not be
practical either.

As an example, approximately 10 service programs are provided for the
language-specific and common run-time routines provided by the OS/400.
Over 70 modules went into creating these 10 service programs. This ratio
seems to be a good balance for performance, understandability, and maintain-
ability.

Chapter 4. Program Creation Concepts ~ 4-27

4-28 AS/400 ILE Concepts V3R6

Chapter 5. Activation Group Management

This chapter contains examples of how to structure an application using activation
groups. Topics include:

e Supporting multiple applications

» Using the Reclaim Resources (RCLRSC) command with OPM and ILE pro-
grams

 Deleting activation groups with the Reclaim Activation Group (RCLACTGRP)
command

e Service programs and activation groups

Multiple Applications Running in the Same Job

© Copyright IBM Corp. 1995

User-named activation groups allow you to leave an activation group in a job for
later use. A normal return operation or a skip operation (such as longjmp() in ILE
C/400) past the control boundary does not delete your activation group.

This allows you to leave your appliéation in its last-used state. Static variables and
open files remain unchanged between calls into your application. This can save
processing time and may be necessary to implement the function you are trying to
provide.

You should be prepared, however, to accept requests from multiple independent
clients running in the same job. The system does not limit the number of ILE pro-

anAmian mEA e

to support multiple clients.

Figure 5-1 shows a technique that you may use to share common service functions
while keeping the performance advantages of a user-named activation group.

—Activation Group A1-

\
' LE—— | .
| User One | _——Activation Group A3—~
\
i Program A i [ILE
[CALLPRC P1 . Service
: ID=ONE : Program X
\\ ______________ / Procedure P1

|
|
|
|
|
|
|
|
|
- i
Procedure P10 :
:
|
|
|
|
|
|
|
|
|
|
]

+ Static Storage @

_—Activation Group A2~

ILE
User Two
Program B

|
|
|
I
| CALLPRC P1
|
\

ID=TWO

~N—_——— -

RV2W1042-0

Figure 5-1. Multiple Applications Running in the Same Job

5-1

Each call to a procedure in service program X requires a user handle. The field ID
represents a user handle in this example. Each user is responsible for providing
this handle. An initialization routine to return a unique handle for each user is
implemented by you.

When a call is made to your service program, the user handle is used to locate the
storage variables that relate to this user. While saving activation-group creation
time, you can support multiple clients at the same time.

Reclaim Resources Command

The Reclaim Resources (RCLRSC) command depends on a system concept known
as a level number. A level number is a unique value assigned by the system to
certain resources you use within a job. Three level numbers are defined as follows:

Call level number

Each call stack entry is given a unique level number
Program-activation level number

Each OPM and ILE program activation is given a unique level number
Activation-group level number

Each activation group is given a unique level number

As your job runs, the sysiem continues o assign unique ievei numbers for each
new occurrence of the resources just described. The level numbers are assigned
in increasing value. Resources with higher level numbers are created after
resources with lower level numbers.

Figure 5-2 on page 5-3 shows an example of using the RCLRSC command on
OPM and ILE programs. Call-level scoping has been used for the open files shown
in this example. When call-level scoping is used, each data management resource
is given the same level numbers as the call stack entry that created that resource.

5-2 AS/400 ILE Concepts V3R6

- Default Activation Group - - - ————————— - - -
/ \

\{ Call Stack :
| OPM —— —OPM !
| 1
Program A
i Activation Program A ODP F1 |
|
: —Number 101 —Number 102 ——— Number 102 |
| |
[|
| OPM——— OPM !
|
| Program B Program B '
| Activation RCLRSC LVL() ODP F2 I
. |
| ~Number 103 —— Number 104 —Number 104 —— |
|
t v :
| —OPM ——— ;"'OPM e ! :
| : i |
\ P ;
} heoation ProgamC ~ ——| ODPF3 i
i " Number 105 ' ‘Number 106 -~ - - LNumber 106 !
|
‘ I
i FILE —————— ILE e |
: | |
! Program D ProgramD ~——{ Shared ODP F1 '
| Activation ; :
| —Number 107 “~Number 108~~~ . —Number 108 /:
\ 7/
=== *DFTACTGRP ~ = ===~ = === === -———— - g
_—— Activation Group Al-----4-—--—- ===
/ \
| LE———— ~ILE A
| |
| Program A [
| Activation PEP P1 :
| Number 199 —— L-Number 200 —— |
I I
| ~ILE :
| |
l UEP P2 !
| |
: L Number 201 :
\\ //

RV3W100-0

Figure 5-2. Reclaim Resources

In this example, the calling sequence is programs A, B, C, and D. Programs D and
C return to program B. Program B is about to use the RCLRSC command with an
option of LVL(*). The RCLRSC command uses the level (LVL) parameter to clean
up resources. All resources with a call-level number greater than the call-level
number of the current call stack entry are cleaned up. In this example, call-level
number 104 is used as the starting point. All resources greater than call-level
number 104 are deleted. Note that resouces in call level 200 and 201 are unaf-
fected by RCLRSC because they are in an ILE activation group. RCLRSC works
only in the default activation group.

In addition, the storage from programs C and D and the open data path (ODP) for

file F3 is closed. File F1 is shared with the ODP opened in program A. The
shared ODP is closed, but file F1 remains open.

Chapter 5. Activation Group Management 5-3

Reclaim Resources Command for OPM Programs
The Reclaim Resources (RCLRSC) command may be used to close open files and
free static storage for OPM programs that have returned without ending. Some
OPM languages, such as RPG, allow you to return without ending the program. If
you later want to close the program's files and free its storage, you may use the
RCLRSC command.

Reclaim Resources Command for ILE Programs
For ILE programs that are created by the CRTBNDxxx command with
DFTACTGRP(*YES) specified, the RCLRSC command frees static storage just as it
does for OPM programs. For ILE programs that are not created by the
CRTBNDxxx command with DFTACTGRP(*YES) specified, the RCLRSC command
reinitializes any activations that have been created in the default activation group
but does not free static storage. ILE programs that use large amounts of static
storage should be activated in an ILE activation group. Deleting the activation
group returns this storage to the system. The RCLRSC command closes files
opened by service programs or ILE programs running in the default activation
group. The RCLRSC command does not reinitialize static storage of service pro-
grams and does not affect nondefault activation groups.

To use the RCLRSC command directly from ILE, you can use either the
QCAPCMD API or an ILE CL procedure. The QCAPCMD API aliows you to
directly call system commands without the use of a CL program. In Figure 5-2 on
page 5-3, directly calling system commands is important because you may want to
use the call-level number of a particular ILE procedure. Certain languages, such as
ILE C/400, also provide a system function that allows direct running of OS/400
commands.

Reclaim Activation Group Command
The Reclaim Activation Group (RCLACTGRP) command can be used to delete a
nondefault activation group that is not in use. This command allows options to
either delete all eligible activation groups or to delete an activation group by name.

Service Programs and Activation Groups

When you create an ILE service program, decide whether to specify an option of
*CALLER or a name for the ACTGRP parameter. This option determines whether
your service program will be activated into the caller's activation group or into a
separately named activation group. Either choice has advantages and disadvan-
tages. This topic discusses what each option provides.
For the ACTGRP(*CALLER) option, the service program functions as follows:

o Static procedure calls are fast

Static procedure calls into the service program are optimized when running in
the same activation group.

¢ Shared external data

Service programs may export data to be used by other programs and service
programs in the same activation group.

» Shared data management resources

5-4 AS/400 ILE Concepts V3R6

Open files and other data management resources may be shared between the
service program and other programs in the activation group. The service
program may issue a commit operation or a rollback operation that affects the
other programs in the activation group.

¢ No control boundary

Unhandled exceptions within the service program percolate to the client pro-
grams. HLL end verbs used within the service program can delete the acti-
vation group of the client programs.
For the ACTGRP(name) option, the service program functions as follows:
e Separate address space for variables

The client program cannot manipulate pointers to address your working
storage. This may be important if your service program is running with adopted
authority.

e Separate data management resources

You have your own open files and commitment definitions. The accidental
sharing of open files is prevented.

e State information controlled

You control when the application storage is deleted. By using HLL end verbs
or normal language return statements, you can decide when to delete the appli-
cation. You must, however, manage the state information for multiple clients.

Chapter 5. Activation Group Management 5-5

5-6 AS/400 ILE Concepts V3R6

Chapter 6. Calls to Procedures and Programs

The ILE call stack and argument-passing methods facilitate interlanguage communi-
cation, making it easier for you to write mixed-language applications. This chapter
discusses different examples of dynamic program calls and static procedure calls,
which were introduced in “Calls to Programs and Procedures” on page 2-10. A
third type of call, the procedure pointer call, is introduced.

In addition, this chapter discusses original program model (OPM) support for OPM
and ILE application programming interfaces (APIs).

Call Stack

The call stack is a last-in-first-out (LIFO) list of call stack entries, one entry for
each called procedure or program. Each call stack entry has information about the
automatic variables for the procedure and about other resources scoped to the call
stack entry, such as condition handlers and cancel handlers.

There is one call stack per job. A call adds a new entry on the call stack for the
called procedure or program and passes control to the called object. A return
removes the stack entry and passes control back to the calling procedure or
program in the previous stack entry.

Call Stack Example

© Copyright IBM Corp. 1995

Figure 6-1 on page 6-2 contains a segment of a call stack with two programs: an
OPM program (Program A) and an ILE program (Program B). Program B contains
three procedures: its program entry procedure, its user entry procedure, and
another procedure (P1). The concepts of program entry procedure (PEP) and user
entry procedure (UEP) are defined in “Module Object” on page 2-2. The call flow
includes the following steps:

1. A dynamic program call to Program A.

2. Program A calls Program B, passing control to its PEP. This call to Program B
is a dynamic program call.

3. The PEP calls the UEP. This is a static procedure call.

4. The UEP calls procedure P1. This is a static procedure call.

Call Stack

OPM——mm— - -~ OPM
Program A
Dynamic
TILE——— Program
Program B Call
~Module M1——— |- - - - ; ILE
Program Entry Program Entry
Procedure Procedure
Static
Procedure
Call
db e
User Entry User Entry
Procedure Procedure
Static
Procedure
Call
(Module M2——— | 7
‘ Procedure P1 Procedure P1

RV2W1034-1

Figure 6-1. Dynamic Program Calls and Static Procedure Calls on the Call Stack

Figure 6-1 illustrates the call stack for this example. The most recently called entry
on the stack is depicted at the bottom of the stack. It is the entry that is currently
processing. The current call stack entry may do either of the following:

» Call another procedure or program, which adds another entry to the bottom of
the stack.

* Return control to its caller after it is done processing, which removes itself from
the stack.

Assume that, after procedure P1 is done, no more processing is needed from
Program B. Procedure P1 returns control to the UEP, and P1 is removed from the
stack. Then the UEP returns control to the PEP, and the UEP is removed from the
stack. Finally, the PEP returns control to Program A, and the PEP is removed from
the stack. Only Program A is left on this segment of the call stack. Program A
continues processing from the point where it made the dynamic program call to
Program B.

Calls to Programs and Calls to Procedures

Three types of calls can be made during ILE run time: dynamic program calls,
static procedure calls, and procedure pointer calls.

When an ILE program is activated, all of its procedures except its PEP become
available for static procedure calls and procedure pointer calls. Program activation
occurs when the program is called by a dynamic program call, and all ILE service
programs that are bound to the called program are also activated. The procedures

6-2 AS/400 ILE Concepts V3R6

in an ILE service program can be accessed only by static procedure calls or by
procedure pointer calls (not by dynamic program calls).

Static Procedure Calls
A call to an ILE procedure adds a new call stack entry to the bottom of the stack
and passes control to a specified procedure. Examples include any of the fol-
lowing:

1. A call to a procedure in the same module

2. A call to a procedure in a different module in the same ILE program or service
program

3. A call to a procedure that has been exported from an ILE service program in
the same activation group

4. A call to a procedure that has been exported from an ILE service program in a
different activation group

In examples 1, 2, and 3, the static procedure call does not cross an activation
group boundary. The call path length, which affects performance, is identical. This
call path is much shorter than the path for a dynamic program call to an ILE or
OPM program. In example 4, the call crosses an activation group boundary, and
additional processing is done to switch activation group resources. The call path
length is longer than the path length of a static procedure call within an activation
group, but still shorter than for a dynamic program call.

For a static procedure call, the called procedure must be bound to the calling pro-
cedure during binding. The call aiways accesses the same procedure. This con-
trasts with a call to a procedure through a pointer, where the target of the call can
vary with each call.

Procedure Pointer Calls
Procedure pointer calls provide a way to call a procedure dynamically. For
example, by manipulating arrays, or tables, of procedure names or addresses, you
can dynamically route a procedure call to different procedures.

Procedure pointer calls add entries to the call stack in exactly the same manner as
static procedure calls. Any procedure that can be called using a static procedure
call can also be called through a procedure pointer. If the called procedure is in
the same activation group, the cost of a procedure pointer call is almost identical to
the cost of a static procedure call. Procedure pointer calls can additionally access
procedures in any ILE program that has been activated.

Passing Arguments to ILE Procedures
In an ILE procedure call, an argument is an expression that represents a value
that the calling procedure passes to the procedure specified in the call. ILE lan-
guages use three methods for passing arguments:

by value, directly The value of the data object is placed directly into the argu-
ment list.

by value, indirectly The value of the data object is copied to a temporary
location. The address of the copy (a pointer) is placed into
the argument list.

Chapter 6. Calls to Procedures and Programs 6-3

by reference A pointer to the data object is placed into the argument list.
Changes made by the called procedure to the argument are
reflected in the calling procedure.

Figure 6-2 illustrates these argument passing styles. Not all ILE languages support
passing by value, directly. The available passing styles are described in the ILE
HLL programmer's guides.

By value, directly

a copy of argument

By value, indirectly

pointer > a copy of argument

By reference

the actual argument

A 4

pointer

RV2W1027-1

Figure 6-2. Methods for Passing Arguments to ILE Procedures

-

vhan data ie nacead hv valiie and whan it ie
1 Gaia IS passed © aiue angd en it

Hl | ecamantice 1icnially datarmin
HLe Semantics usuany aetel Vel y vaiu G Wh

y NG ~
passed by reference. For example, ILE C/400 passes and accepts arguments by
value, directly, while for ILE COBOL/400 and ILE RPG/400, arguments are usually
passed by reference. You must ensure that the calling program or procedure
passes arguments in the manner expected by the called procedure. The ILE HLL
programmer's guides contain more information on passing arguments to different

languages.

<

A maximum of 400 arguments are allowed on a static procedure call. Each ILE
language may further restrict the maximum number of arguments. The ILE lan-
guages support the following argument-passing styles:

e ILE C/400 passes and accepts arguments by value directly, widening integers,
and floating-point values. Arguments can also be passed by value indirectly by
specifying the #pragma argument directive for a called function.

» |LE COBOL/400 passes arguments by reference or by value indirectly. ILE
COBOL/400 accepts parameters only indirectly.

e ILE RPG/400 passes and accepts arguments by reference.

* ILE CL passes and accepts arguments by reference.

Function Results

To support HLLs that allow the definition of functions (procedures that return a
result argument), the model assumes that a special function result argument may
be present, as shown in Figure 6-3 on page 6-5. As described in the ILE HLL
programmer's guides, some ILE languages use a common mechanism for returning
function results.

6-4 AS/400 ILE Concepts V3R6

Calling
Procedure

Call

Calling procedure Called procedure

passes arguments may return a
: function result

Return

Called Procedure

RV2W1028-1

Figure 6-3. Program Call Argument Terminology

Omitted Arguments

All [LE languages can simulate omitted arguments, which allows the use of the
feedback code mechanism for ILE condition handlers and other run-time proce-
dures. For example, if an ILE C/400 procedure or an ILE bindable API is expecting
an argument passed by reference, you can sometimes omit the argument by
passing a null pointer in its place. For information about how to specify an omitted
argument in a specific ILE language, refer to the programmer’s guide for that lan-
guage. The System API Reference specifies which arguments can be omitted for
each APL.

For ILE languages that do not provide an intrinsic way for a called procedure to test
if an argument has been omitted, the Test for Omitted Argument (CEETSTA)
bindable API is available.

Dynamic Program Calls

A dynamic program call is a call made to a program object. For example, when
you use the CL command CALL, you are making a dynamic program call.

OPM programs are called by using dynamic program calls. OPM programs are
additionally limited to making only dynamic program calls.

EPM programs can make program calls and procedure calls. EPM programs can
also be called by other programs and procedures.

ILE programs are also called by dynamic program calls. The procedures within an
activated ILE program can be accessed by using static procedure calls or proce-
dure pointer calls. ILE programs that have not been activated yet must be called
by a dynamic program call.

In contrast to static procedure calls, which are bound at compile time, symbols for
dynamic program calls are resolved to addresses when the call is performed. As a
result, a dynamic program call uses more system resources than a static procedure
call. Examples of a dynamic program call include:

Chapter 6. Calls to Procedures and Programs 6-5

» A call to an ILE program, an EPM program, or an OPM program
¢ A call to a non-bindable API

A dynamic program call to an ILE program passes control to the PEP of the identi-
fied program, which then passes control to the UEP of the program. After the
called program is done processing, control is passed back to the instruction fol-
lowing the call program instruction.

Passing Arguments on a Dynamic Program Call

Calls to ILE or OPM programs (in contrast to calls to ILE procedures) usually pass
arguments by reference, meaning that the called program receives the address of
the arguments. EPM programs can receive arguments passed by reference, by
value directly, or by value indirectly.

When using a dynamic program call, you need to know the method of argument
passing that is expected by the called program and how to simulate it if necessary.
A maximum of 255 arguments are allowed on a dynamic program call. Each ILE
language may further restrict the maximum number of arguments. Information on
how to use the different passing methods is contained in the ILE HLL programmer's
guides, and, for passing methods in EPM, in the &71844..

Interlanguage Data Compatibility

ILE calls allow arguments to be passed between procedures that are written in dif-
ferent HLLs. To facilitate data sharing between the HLLs, some ILE languages
have added data types. For example, ILE COBOL/400 added USAGE
PROCEDURE-POINTER as a new data type.

To pass arguments between HLLs, you need to know the format each HLL expects
of arguments it is receiving. The calling procedure is required to make sure the
arguments are the size and type expected by the called procedure. For example,
an ILE C/400 function may expect a 4-byte integer, even if a short integer (2 bytes)
is declared in the parameter list. Information on how to match data type require-
ments for passing arguments is contained in the ILE HLL programmer's guides.

Syntax for Passing Arguments in Mixed-Language Applications
Some ILE languages provide syntax for passing arguments to procedures in other
ILE languages. For example, ILE C/400 provides a #pragma argument to pass
value arguments to other ILE procedures by value indirectly.

Operational Descriptors

Operational descriptors may be useful to you if you are writing a procedure or API
that can receive arguments from procedures written in different HLLs. Operational
descriptors provide descriptive information to the called procedure in cases where
the called procedure cannot precisely anticipate the form of the argument (for
example, different types of strings). The additional information allows the proce-
dure to properly interpret the arguments.

The argument supplies the value; the operational descriptor supplies information

about the argument's size, shape and type. For example, this information may
include the length of a character string and the type of string.

6-6 AS/400 ILE Concepts V3R6

With operational descriptors, services such as bindable APIs are not required to
have a variety of different bindings for each HLL, and HLLs do not have to imitate
incompatible data types. A few ILE bindable APIs use operational descriptors to
accommodate the lack of common string data types between HLLs. The presence
of the operational descriptor is transparent to the APl user.

Operational descriptors support HLL semantics while being invisible to procedures
that do not use or expect them. Each ILE language can use data types that are
appropriate to the language. Each ILE language compiler provides at least one
method for generating operational descriptors. For more information on HLL
semantics for operational descriptors, refer to the ILE HLL reference manual.

Operational descriptors are distinct from other data descriptors with which you may
be familiar. For instance, they are unrelated to the descriptors associated with dis-
tributed data or files.

Requirements of Operational Descriptors

You should use operational descriptors when they are expected by a called proce-
dure written in a different ILE language and when they are expected by an ILE
bindable API. Generally, bindable APIs require descriptors for most string argu-
ments. Information on bindable APIs in the System API Reference specifies
whether a given bindable API requires operational descriptors.

Absence of a Required Descriptor

The omission of a required descriptor is an error. If a procedure requires a
descriptor for a specific parameter, this requirement forms part of the interface for
that procedure. If a required descriptor is not provided, it will fail during run time.

Presence of an Unnecessary Descriptor

The presence of a descriptor that is not required does not interfere with the called
procedure's access to arguments. If an operational descriptor is not needed or
expected, the called procedure simply ignores it.

Note: Descriptors can be an impediment to interlanguage communication when
they are generated regardless of need. Descriptors increase the length of
the call path, which can diminish performance.

Bindable APIs for Operational Descriptor Access

Descriptors are normally accessed directly by a called procedure according to the
semantics of the HLL in which the procedure is written. Once a procedure is pro-
grammed to expect operational descriptors, no further handling is usually required
by the programmer. However, sometimes a called procedure needs to determine
whether the descriptors that it requires are present before accessing them. For this
purpose the following bindable APIs are provided:

* Retrieve Operational Descriptor Information (CEEDOD) bindable API
» Get String Information (CEESGI) bindable API

Chapter 6. Calls to Procedures and Programs 6-7

Support for OPM and ILE APIs

When you develop new functions in ILE or convert an existing application to ILE,
you may want to continue to support call-level APIs from OPM. This topic explains
one technique that may be used to accomplish this dual support while maintaining
your application in ILE.

ILE service programs provide a way for you to develop and deliver bindable APIs
that may be accessed from all ILE languages. To provide the same functions to
OPM programs, you need to consider the fact that an ILE service program cannot
be called directly from an OPM program.

The technique to use is to develop ILE program stubs for each bindable API that
you plan to support. You may want to name the bindable APIs the same as the
ILE program stubs, or you may choose different names. Each ILE program stub
contains a static procedure call to the actual bindable API.

An example of this technique is shown in Figure 6-4.

Procedure P4

RV2W1047-1

»Default Activation Group ~ _~-Activation Group Vendori-—-~_
/ | / \
| OPM Lo |
] .. I [rILE !
| Prograim A ! : | Program B :
| L
| CALLPGM B Lo CALLPRC P1 !
| o ~STUB—— |
\) : |
N - | . |
| rILE————— :
| Program D |
| CALLPRC P4 :
|
| —STUB |
,—Activation Group A1-_ : —ILE :
:/ ILE \: | Service |
! Program H ! | Program X :
| «— !
|| CALLPRCP1 | | | Lrocefjiue F |
| |
| | | :
| |
| |
| |
\ |

Figure 6-4. Supporting OPM and ILE APlIs

Programs B through D are the ILE program stubs. Service program X contains the
actual implementation of each bindable API. Each program stub and the service
program are given the same activation group name. In this example, the activation
group name VENDORT1 is chosen.

Activation group VENDORT is created by the system when necessary. The
dynamic program call from OPM program A creates the activation group on the first
call from an OPM program. The static procedure call from ILE program H creates
the activation group when ILE program H is activated. Once the activation group
exists, it may be used from either program A or program H.

6-8 AS/400 ILE Concepts V3R6

You should write the implementation of your APl in an ILE procedure (procedure P1
in this example). This procedure may be called either directly through a procedure
call or indirectly through a dynamic program call. You should not implement any
functions such as sending exception messages that depend on a specific call stack
structure. A normal return from either the program stub or the implementing proce-
dure leaves the activation group in the job for later use. You can implement your
API procedure with the knowledge that a control boundary is established for either
the program stub or the implementing procedure on each call. HLL end verbs
delete the activation group whether the call originated from an OPM program or an
ILE program.

Chapter 6. Calls to Procedures and Programs 6-9

6-10 AS/400 ILE Concepts V3R6

Chapter 7. Storage Management

The operating system provides storage support for the ILE high-level languages.
This storage support removes the need for unique storage managers for the run-
time environment of each language. It avoids incompatibilities between different
storage managers and mechanisms in high-level languages.

The operating system provides the automatic, static, and dynamic storage used by
programs and procedures at run time. Automatic and static storage are managed
by the operating system. That is, the need for automatic and static storage is
known at compilation time from program variable declarations. Dynamic storage is
managed by the program or procedure. The need for dynamic storage is known
only at run time.

When program activation occurs, static storage for program variables is allocated
and initialized.

When a program begins to run, automatic storage is allocated. The automatic
storage stack is extended for variables in a program or procedure as the program
or procedure is added to the call stack.

As a program runs, dynamic storage is allocated under program control. This
storage is extended as additional storage is required. You have the ability to
control dynamic storage. The remainder of this chapter concentrates on dynamic
storage and the ways in which it can be controlled.

Dynamic Storage

The operating system allows the use of multiple heaps that are dynamically created
and discarded. A heap is an area of storage used for allocations of dynamic
storage. The amount of dynamic storage required by an application depends on
the data being processed by the programs and procedures that use the heap.

Heap Characteristics

© Copyright IBM Corp. 1995

Each heap has the following characteristics:
* A heap is assigned a unique heap identifier.
The heap identifier for the default heap is always zero.

A storage management bindable API, called by a program or procedure, uses
the heap identifier to identify the heap on which it is to act. The bindable API
must run within the activation group that owns the heap.

¢ A heap is owned by the activation group that creates it.

Because activation groups own heaps, the lifetime of a heap is no longer than
that of the owning activation group. The heap identifier is meaningful and
unique only within the activation group that owns it.

* The size of a heap is dynamically extended to satisfy allocation requests.

The maximum size of the heap is 4 gigabytes minus 512K bytes. This is the
maximum heap size if the total number of allocations (at any one time) does
not exceed 128 000.

71

* The maximum size of any single allocation from a heap is limited to 16 mega-
bytes minus 64K bytes.

Default Heap

The first request for dynamic storage within an activation group results in the cre-
ation of a default heap from which the storage allocation takes place. (This
assumes that you do not explicitly create a heap on the first request for dynamic
storage.) Additional requests for dynamic storage are met by further allocations
from the default heap. If there is insufficient storage in the heap to satisfy the
current request for dynamic storage, the heap is extended and the additional
storage is allocated.

Allocated dynamic storage remains allocated until it is explicitly freed or until the
heap is discarded. The default heap is discarded only when the owning activation
group ends.

Programs in the same activation group automatically share dynamic storage if that
storage has been allocated from the default heap. However, you can isolate the
dynamic storage used by some programs and procedures within an activation
group. You do this by creating one or more heaps.

Iser-Created Heaps

You can explicitly create and discard one or more heaps by using ILE bindable
APls. This gives you the capability of managing the heaps and the dynamic
storage allocated from those heaps.

For example, dynamic storage allocated in user-created heaps for programs within
an activation group may or may not be shared. The sharing of dynamic storage
depends on which heap identifier is referenced by the programs. You can use
more than one heap to avoid automatic sharing of dynamic storage. In this way
you can isolate logical groups of data. Following are some additional reasons for
using one or more user-created heaps:

* You can group certain storage objects together to meet a one-time require-
ment. Once that requirement has been met, you can free the dynamic storage
that was allocated by a single call to the Discard Heap (CEEDSHP) bindable
API. This operation frees the dynamic storage and discards the heap. In this
way, dynamic storage is available to meet other requests.

* You can re-use dynamic storage allocated from a heap by using the Mark Heap
(CEEMKHP) and Release Heap (CEERLHP) bindable APIs. The CEEMKHP
bindable API allows you to identify both a storage allocation and all subsequent
allocations. When you are ready to free the group of allocations identified by
the mark, use the CEERLHP bindable API. Using the mark and release func-
tions leaves the heap intact but frees the dynamic storage that had been allo-
cated from it. In this way, you can avoid the system overhead associated with
heap creation by re-using existing heaps to meet dynamic storage require-
ments.

7-2 AS/400 ILE Concepts V3R6

» Your storage requirements may not match the storage attributes that define the
default heap. For example, the initial size of the default heap is 4K bytes.
However, you require a number of dynamic storage allocations that together
exceed 4K bytes. You can create a heap with a larger initial size than 4K
bytes, and by doing this you can meet your long-term dynamic storage require-
ments. Similarly, you can have heap extensions larger than 4K bytes. For
information about defining heap sizes, see “Heap Allocation Strategy” on
page 7-4 and the discussion of heap attributes.

You may have other reasons for using multiple heaps rather than the default heap.
The storage management bindable APIs give you the capability to manage both the
heaps that you create and the dynamic storage allocated in those heaps. See the
System API Reference for an explanation of the storage management bindable
APls.

Single-Heap Support

Languages that do not have intrinsic multiple-heap storage support, such as ILE
C/400, use the default heap. You cannot use the Discard Heap (CEEDSHP), the
Mark Heap (CEEMKHP), or the Release Heap (CEERLHP) bindable APIs with the
default heap. The only way to free dynamic storage allocated by the default heap
is by explicit free operations, or when the owning activation group ends.

In this case, the use of the default heap ensures that allocated dynamic storage is
not inadvertently released in mixed-language applications. Release heap and
discard heap operations are considered insecure for large applications that re-use
existing code with potentially different storage support. If release heap operations
were valid for the default heap, procedures could correctly use different storage
management capabilities separately. However, those storage management capabil-
ities might fail when they are used in combination.

ILE C/400 Heap Support
ILE C/400 provides optional heap support to that provided by the system.

If you choose to use this optional support, the following rules apply:

 Dynamic storage allocated through the C functions malloc(), calloc(), and
realloc(), cannot be freed or reallocated with the CEEFRST and the CEECZST
bindable APIs.

» Dynamic storage allocated by the CEEGTST bindable API can be freed with
the free() function.

» Dynamic storage initially allocated with the CEEGTST bindable API can be real-
located with the realloc() function.

If you do not choose this optional support, you can use both the storage manage-
ment bindable APIs and the malloc(), calloc(), realloc(), and free() functions.

Other languages, such as COBOL, have no heap storage model. These languages

can access the ILE dynamic storage model through the bindable APIs for dynamic
storage.

Chapter 7. Storage Management 7-3

Heap Allocation Strategy
The attributes associated with the default heap are defined by the system through a
default allocation strategy. This allocation strategy defines attributes such as a
heap creation size of 4K bytes and an extension size of 4K bytes. You cannot
change this default allocation strategy.

However, you can control heaps that you explicitly create through the Create a
Heap (CEECRHP) bindable API. You also can define an allocation strategy for
explicitly created heaps through the Define Heap Allocation Strategy (CEE4DAS)
bindable API. Then, when you explicitly create a heap, the heap attributes are pro-
vided by the allocation strategy that you defined. In this way you can define sepa-
rate allocation strategies for one or more explicitly created heaps.

You can use the CEECRHP bindable API without defining an allocation strategy. In
this case, the heap is defined by the attributes of the _CEE4ALC allocation strategy
type. The _CEE4ALC allocation strategy type specifies a heap creation size of 4K
bytes and an extension size of 4K bytes. The _CEE4ALC allocation strategy type
contains the following attributes:

Max_Sngl_Alloc = 16MB - 64K /* maximum size of a single allocation */

Min_Bdy = 16 /* minimum boundary alignment of any allocation */
Crt_Size = 4K /* initial creation size of the heap */

Ext_Size = 4K /* the extension size of the heap */

Alloc_Strat =0 /* a choice for allocation strategy */

No_ Mark = /* a group deallocation choice */

1 a
Blk_Xfer =0 /* a choice for block transfer of a heap */
PAG =0 /* a choice for heap creation in a PAG */
Alloc_Init =0 /* a choice for allocation initialization */
Init_Value 0x00 /* initialization value %/

The attributes are shown here to illustrate the structure of the _CEE4ALC allocation
strategy type. For a full explanation of the attributes, see the description of the
_CEE4ALC allocation strategy type in the System API Reference.

Storage Management Bindable APIls

Bindable APIs are provided for all heap operations. Applications can be written
using either the bindable APls, language-intrinsic functions, or both.

The bindable APIs fall into the following categories:

¢ Basic heap operations. These operations can be used on the default heap and
on user-created heaps.

The Free Storage (CEEFRST) bindable API frees one previous allocation of
heap storage.

The Get Heap Storage (CEEGTST) bindable API allocates storage within a
heap.

The Reallocate Storage (CEECZST) bindable API changes the size of pre-
viously allocated storage.

7-4 AS/400 ILE Concepts V3R6

« Extended heap operations. These operations can be used only on user-
created heaps.

The Create Heap (CEECRHP) bindable API creates a new heap.
The Discard Heap (CEEDSHP) bindable API discards an existing heap.

The Mark Heap (CEEMKHP) bindable API returns a token that can be used
to identify heap storage to be freed by the CEERLHP bindable API.

The Release Heap (CEERLHP) bindable API frees all storage allocated in
the heap since the mark was specified.

* Heap allocation strategies

The Define Heap Allocation Strategy (CEE4DAS) bindable API defines an
allocation strategy that determines the attributes for a heap created with the
CEECRHP bindable API.

See the System API Reference for specific information about the storage manage-
ment bindable APIs.

Chapter 7. Storage Management 7-5

7-6 AS/400 ILE Concepts V3R6

Chapter 8. Exception and Condition Management

This chapter provides additional details on exception handling and condition han-
dling. Before you read this chapter, read the advanced concepts described in
“Error Handling” on page 3-12.

The exception message architecture of the OS/400 is used to implement both
exception handling and condition handling. There are cases in which exception
handling and condition handling interact. For example, an ILE condition handler
registered with the Register a User-Written Condition Handler (CEEHDLR) bindable
API is used to handle an exception message sent with the Send Program Message
(QMHSNDPM) API. These interactions are explained in this chapter. The term
exception handler is used in this chapter to mean either an OS/400 exception
handler or an ILE condition handler.

Handle Cursors and Resume Cursors

To process exceptions, the system uses two pointers called the handle cursor and
resume cursor. These pointers keep track of the progress of exception handling.
You need to understand the use of the handle cursor and resume cursor under
certain advanced error-handling scenarios. These concepts are used to explain
additional error-handling features in later topics.

The handle cursor is a pointer that keeps track of the current exception handler.
As the system searches for an available exception handler, it moves the handle
cursor to the next handler in the exception handler list defined by each call stack
entry. This list can contain:

¢ Direct monitor handlers
¢ |LE condition handlers
¢ HLL-specific handlers

The handle cursor moves down the exception handler list to lower priority handlers
until the exception is handled. If the exception is not handled by any of the excep-
tion handlers that have been defined for a call stack entry, the handle cursor
moves to the first (highest priority) handler for the previous call stack entry.

The resume cursor is a pointer that keeps track of the current location at which
your exception handler can resume processing after handling the exception.
Normally the system sets the resume cursor to the next instruction following the
occurrence of an exception. For call stack entries above the procedure that
incurred the exception, the resume point is directly after the procedure or program
call that currently suspended the procedure or program. To move the resume
cursor to an earlier resume point, use the Move Resume Cursor (CEEMRCR)
bindable API.

Figure 8-1 on page 8-2 shows an example of the handle cursor and resume
cursor.

© Copyright IBM Corp. 1995 8-1

Call Stack
FILE

Procedure P1
CALLPRC P2

Resume Point

Exception
Handler
List
—ILE

Procedure P2
CALLPRC P3

Handle
Cursor

—ILE
Procedure P3
Exception Occurred

Resume
Cursor

Exception Handler
Procedure P10

RV2W1044-0

Figure 8-1. Handle Cursor and Resume Cursor Example

The handle cursor is currently at the second exception handler defined in the

exception handler priority list for procedure P2. The handler procedure P10 is cur-
rently called by the system. If procedure P10 handles the exception and returns,
control goes to the current resume cursor location defined in procedure P3. This
example assumes that procedure P3 percolated the exception to procedure P2.

The exception handler procedure P10 can modify the resume cursor with the Move
Resume Cursor (CEEMRCR) bindable API. Two options are provided with this
API. An exception handler can modify the resume cursor to either of the following:

* The call stack entry containing the handle cursor
¢ The call stack entry prior to the handle cursor

In Figure 8-1, you could modify the resume cursor to either procedure P2 or P1.
After the resume cursor is modified and the exception is marked as handled, a
normal return from your exception handler returns control to the new resume point.

Exception Handler Actions

When your exception handler is called by the system, you can take several actions
to handle the exception. For example, ILE C/400 extensions support control
actions, branch point handlers, and monitoring by message ID. The possible
actions described here pertain to any of the following types of handlers:

¢ Direct monitor handler
¢ |ILE condition handler
e HLL-specific handler

8-2 AS/400 ILE Concepts V3R6

How to Resume Processing

If you determine that processing can continue, you can resume at the current
resume cursor location. Before you can resume processing, the exception
message must be changed to indicate that it has been handled. Certain types of
handlers require you to explicitly change the exception message to indicate that the
message has been handled. For other handler types, the system can change the
exception message before your handler is called.

For a direct monitor handler, you may specify an action to be taken for the excep-
tion message. That action may be to call the handler, to handle the exception
before calling the handler, or to handle the exception and resume the program. If
the action is just to call the handler, you can still handle the exception by using the
Change Exception Message (QMHCHGEM) API or the bindable API CEE4HC
(Handle Condition). You can change the resume point within a direct monitor
handler by using the Move Resume Cursor (CEEMRCR) bindable API. After
making these changes, you continue processing by returning from your exception
handler.

For an ILE condition handler, you continue processing by setting a return code
value and returning to the system. For the actual return code values, please refer
to the Register a User-Written Condition Handler (CEEHDLR) bindable API
described in the System API Reference.

For an HLL-specific handler, the exception message is changed to indicate that it
has been handled before your handler is called. To determine whether you can
modify the resume cursor from an HLL-specific handler, refer to your ILE HLL
programmer’s guide.

How to Percolate a Message

If you determine that an exception message is not recognized by your handler, you
can percolate the exception message to the next available handler. For percolation
to occur, the exception message must not be considered as a handled message.
Other exception handlers in the same or previous call stack entries are given a
chance to handle the exception message. The technique for percolating an excep-
tion message varies depending on the type of exception handler.

For a direct monitor handler, do not change the exception message to indicate that
it has been handled. A normal return from your exception handler causes the
system to percolate the message. The message is percolated to the next excep-
tion handler in the exception handler list for your call stack entry. If your handler is
at the end of the exception handler list, the message is percolated to the first
exception handler in the previous call stack entry.

For an ILE condition handler, you communicate a percolate action by setting a
return code value and returning to the system. For the actual return code values,
please refer to the bindable API CEEHDLR described in the System API
Reference.

For an HLL-specific handler, it may not be possible to percolate an exception
message. Whether you can percolate a message depends on whether your HLL
marks the message as handled before your handler is called. If you do not declare
an HLL-specific handler, your HLL can percolate the unhandled exception

Chapter 8. Exception and Condition Management ~ 8-3

message. Please refer to your ILE HLL reference manual to determine the excep-
tion messages your HLL-specific handler can handle.

How to Promote a Message

Under certain limited situations, you can choose to modify the exception message
to a different message. This action marks the original exception message as
handled and restarts exception processing with a new exception message. This
action is allowed only from direct monitor handlers and ILE condition handlers.

For direct monitor handlers, use the Promote Message (QMHPRMM) API to
promote a message. Only status and escape message types can be promoted.
With this API you have some control over where the handle cursor is placed to
continue exception processing. Refer to the System API Reference for information
on this API.

For an ILE condition handler, you communicate the promote action by setting a
return code value and returning to the system. For the actual return code values,
refer to the Register a User-Written Condition Handler (CEEHDLR) bindable API
described in the System API Reference.

Default Actions for Unhandled Exceptions

If an exception message is percolated to the control boundary, the system takes a
default action. If the exception is a notify message, the system sends the default
reply, handles the exception, and allows the sender of the notify message to con-
tinue processing. If the exception is a status message, the system handles the
exception and allows the sender of the status message to continue processing. If
the exception is an escape message, the system handles the escape message and
sends a function check message back to where the resume cursor is currently posi-
tioned. If the unhandled exception is a function check, all entries on the stack up to
the control boundary are cancelled and the CEE9901 escape message is sent to
the next prior stack entry.

Table 8-1 contains default responses that the system takes when an exception is
unhandled at a control boundary.

Table 8-1 (Page 1 of 2). Default Responses to Unhandled Exceptions

Condition Raised by the Signal a

error)

Message Severity of Condition (CEESGL) Bindable Exception Originated from Any Other
Type Condition API Source

Status 0 (Informative Return the unhandled condition. Resume without logging the message.

message)

Status 1 (Warning) Return the unhandled condition. Resume without logging the message.

Notify 0 (Informative Not applicable. Log the notify message and send the default

message) reply.

Notify 1 (Warning) Not applicable. Log the notify message and send the default
reply.

Escape 2 (Error) Return the unhandled condition. Log the escape message and send a func-
tion check message to the call stack entry of
the current resume point.

Escape 3 (Severe Return the unhandled condition. Log the escape message and send a func-

tion check message to the call stack entry of
the current resume point.

8-4 AS/400 ILE Concepts V3R6

Table 8-1 (Page 2 of 2). Default Responses to Unhandled Exceptions

Condition Raised by the Signal a

Message Severity of Condition (CEESGL) Bindable Exception Originated from Any Other
Type Condition API Source
Escape 4 (Critical ILE Log the escape message and send Log the escape message and send a func-
error) a function check message to the tion check message to the call stack entry of
call stack entry of the current the current resume point.
resume point.
Function 4 (Critical ILE Not applicable End the application, and send the CEE9901
check error) message to the caller of the control
boundary.

Note: When the application is ended by an unhandled function check, the acti-
vation group is deleted if the control boundary is the oldest call stack entry
in the activation group.

Nested Exceptions

A nested exception is an exception that occurs while another exception is being
handled. When this happens, processing of the first exception is temporarily sus-
pended. The system saves all of the associated information such as the locations
of the handle cursor and resume cursor. Exception handling begins again with the
most recently generated exception. New locations for the handle cursor and
resume cursor are set by the system. Once the new exception has been properly
handled, handling activities for the original exception normally resume.

When a nested exception occurs, both of the following are still on the call stack:

* The call stack entry associated with the original exception
* The call stack entry associated with the original exception handler

To reduce the possibility of exception handling loops, the system stops the
percolation of a nested exception at the original exception handler call stack entry.
Then the system promotes the nested exception to a function check message and
percolates the function check message to the same call stack entry. If you do not
handle the nested exception or the function check message, the system ends the
application by calling the Abnormal End (CEE4ABN) bindable API. In this case,
message CEE9901 is sent to the caller of the control boundary.

If you move the resume cursor while processing the nested exception, you can
implicitly modify the original exception. To cause this to occur, do the following:

1. Move the resume cursor to a call stack entry earlier than the call stack entry
that incurred the original exception

2. Resume processing by returning from your handler

Condition Handling

ILE conditions are OS/400 exception messages represented in a manner inde-
pendent of the system. An ILE condition token is used to represent an ILE condi-
tion. Condition handling refers to the ILE functions that allow you to handle errors
separately from language-specific error handling. Other SAA systems have imple-

Chapter 8. Exception and Condition Management 8-5

mented these functions. You can use condition handling to increase the portability
of your applications between systems that have implemented condition handling.

ILE condition handling includes the following functions:

» Ability to dynamically register an ILE condition handler

¢ Ability to signal an ILE condition

e Condition token architecture

¢ Optional condition token feedback codes for bindable ILE APIs

These functions are described in the topics that follow.

How Conditions Are Represented

The ILE condition token is a 12-byte compound data type that contains structured
fields to convey aspects of a condition. Such aspects can be its severity, its asso-
ciated message number, and information that is specific to the given instance of the
condition. The condition token is used to communicate this information about a
condition to the system, to message services, to bindable APIs, and to procedures.
The information returned in the optional fc parameter of all ILE bindable APIs, for
example, is communicated using a condition token.

If an exception is detected by the operating system or by the hardware, a corre-
sponding condition token is automaticaliy buiit by the sysiem. You can aiso creaie
a condition token using the Construct a Condition Token (CEENCOD) bindable API.
Then you can signal a condition to the system by returning the token through the
Signal a Condition (CEESGL) bindable API.

Layout of a Condition Token
Figure 8-2 displays a map of the condition token. The starting bit position is shown
for each field.

Case
Severity
Control
Condition_ID Facility_ID I_S_Info
0 32 34 37 40 64

The ILE condition ID
always has case 1 format:

MsgSev Msg_No

0 16
RV2W1032-2

Figure 8-2. ILE Condition Token Layout

Every condition token contains the components indicated in Figure 8-2:

Condition_ID A 4-byte identifier that, with the Facility_ID, describes the condi-
tion that the token communicates. ILE bindable APIs and most
applications produce case 1 conditions.

Case A 2-bit field that defines the format of the Condition_ID portion
of the token. ILE conditions are always case 1.

8-6 AS/400 ILE Concepts V3R6

Severity

Control

Facility_ID

I_S_Info

MsgSev

Msg_No

A 3-bit binary integer that indicates the severity of the condition.
The Severity and MsgSev fields contain the same information.
See Table 8<1 on page 8-4 for a list of ILE condition severities.
See Table 8-3 on page 8-8 and Table 8-4 on page 8-8 for the
corresponding OS/400 message severities.

A 3-bit field containing flags that describe or control various
aspects of condition handling. The third bit specifies whether
the Facility_ID has been assigned by IBM.

A 3-character alphanumeric string that identifies the facility that
generated the condition. The Facility_ID indicates whether the
message was generated by the system or an HLL run time.
Table 8-2 lists the facility IDs used in ILE.

A 4-byte field that identifies the instance specific information
associated with a given instance of the condition. This field
contains the reference key to the instance of the message
associated with the condition token. If the message reference
key is zero, there is no associated message.

A 2-byte binary integer that indicates the severity of the condi-
tion. MsgSev and Severity contain the same information. See
Table 8-1 on page 8-4 for a list of ILE condition severities.
See Table 8-3 on page 8-8 and Table 8-4 on page 8-8 for the
corresponding OS/400 message severities.

A 2-byte binary number that identifies the message associated
with the condition. The combination of Facility_ID and Msg_No
uniquely identifies a condition.

Table 8-2 contains the facility IDs used in ILE condition tokens and in the prefix of

0S/400 messages.

Table 8-2. Facility IDs Used in Messages and ILE Condition Tokens

Facility ID Facility

CEE ILE common library

CPF 0S/400 XPF message

MCH 0S/400 machine exception message

Chapter 8. Exception and Condition Management ~ 8-7

Condition Token Testing

You can test a condition token that is returned from a bindable API for the
following:

Success To test for success, determine if the first 4 bytes are zero. If
the first 4 bytes are zero, the remainder of the condition token
is zero, indicating a successful call was made to the bindable
API.

Equivalent Tokens To determine whether two condition tokens are equivalent (that
is, the same type of condition token, but not the same instance
of the condition token), compare the first 8 bytes of each condi-
tion token with one another. These bytes are the same for all
instances of a given condition.

Equal Tokens To determine whether two condition tokens are equal, (that is,
they represent the same instance of a condition), compare all
12 bytes of each condition token with one another. The last 4
bytes can change from instance to instance of a condition.

Relationship of ILE Conditions to 0S/400 Messages

A message is associated with every condition that is raised in ILE. Th

tnkan nontaine a 1inicia 1IN that Il E 11cac tn write 2 maccana ac
{OKEN CONaINs a uniQuc v natl i uSCSs I Wi a S

condition to the message file.

@
Q
o
3
Q
=
o
=

The format of every run-time message is FFFxxxx:

FFF The facility ID, a 3-character ID that is used by all messages generated
under ILE and ILE languages. Refer to Table 8-2 on page 8-7 for a list of
IDs and corresponding facilities.

xxxx The error message number. This is a hexadecimal number that identifies
the error message associated with the condition.

Table 8-3 and Table 8-4 show how ILE condition severity maps to OS/400
message severity.

Table 8-3. Mapping AS/400 *ESCAPE Message Severities to ILE Condition Severities

From AS/400 Message To ILE Condition To AS/400 Message
Severity Severity Severity

0-29 2 20

30-39 3 30

40-99 4 40

Table 8-4. Mapping AS/400 *STATUS and *NOTIFY Message Severities to ILE Condition

Severities

From AS/400 Message To ILE Condition To AS/400 Message
Severity Severity Severity

0 0 0

1-99 1 10

8-8 AS/400 ILE Concepts V3R6

0S/400 Messages and the Bindable APl Feedback Code

As input to a bindable API, you have the option of coding a feedback code, and
using the feedback code as a return (or feedback) code check in a procedure. The
feedback code is a condition token value that is provided for flexibility in checking
returns from calls to other procedures. You can then use the feedback code as
input to a condition token. If the feedback code is omitted on the call to a bindable
API and a condition occurs, an exception message is sent to the caller of the
bindable API.

If you code the feedback code parameter in your application to receive feedback
information from a bindable API, the following sequence of events occurs when a
condition is raised:

1.

. When the condition token is returned to your application

An informational message is sent to the caller of the APIl, communicating the
message associated with the condition.

. The bindable API in which the condition occurred builds a condition token for

the condition. The bindable API places information into the instance specific
information area. The instance specific information of the condition token is the
message reference key of the informational message. This is used by the
system to react to the condition.

. If a detected condition is critical (severity is 4), the system sends an exception

message to the caller of the bindable API.

. If a detected condition is not critical (severity less than 4), the condition token is

returned to the routine that called the bindable API.

Ut L uorl, u

options:
 Ignore it and continue processing.
« Signal the condition using the Signal a Condition (CEESGL) bindable API.

* Get, format, and dispatch the message for display using the Get, Format,
and Dispatch a Message (CEEMSG) bindable API.

» Store the message in a storage area using the Get a Message
(CEEMGET) bindable API.

¢ Use the Dispatch a Message (CEEMOUT) bindable API to dispatch a user-
defined message to a destination that you specify.

* When the caller of the API regains control, the informational message is
removed and does not appear in the job log.

If you omit the feedback code parameter when you are calling a bindable API, the
bindable API sends an exception message to the caller of the bindable API.

Chapter 8. Exception and Condition Management ~ 8-9

8-10 AS/400 ILE Concepts V3R6

Chapter 9. Debugging Considerations

The source debugger is used to debug ILE programs and service programs. CL
commands can still be used to debug original program model (OPM) programs.

This chapter presents several considerations about the source debugger. Informa-
tion on how to use the source debugger can be found in the online information and
in the programmer's guide for the ILE high-level language (HLL) you are using.
Information on the commands to use for a specific task (for example, creating a
module) can be found in your ILE HLL programmer's guide.

Debug Mode

Addition of Pro

To use the source debugger, your session must be in debug mode. Debug mode
is a special environment in which program testing functions can be used in addition
to normal system functions.

Your session is put into debug mode when you run the Start Debug (STRDBG)
command.

grams to Debug Mode

A program must be added to debug mode before it can be debugged. OPM pro-
grams, ILE programs, and ILE service programs can be in debug mode at the
same time. As many as 10 OPM programs can be in debug mode at one time.
The number of ILE programs and service programs that can be in debug mode at
one time is not limited. However, the maximum amount of debug data that is sup-
ported at one time is 16MB per module.

You must have *CHANGE authority to a program or service program to add it to
debug mode. A program or service program can be added to debug mode when it
is stopped on the call stack.

ILE programs and service programs are accessed by the source debugger one
module at a time. When you are debugging an ILE program or service program,
you may need to debug a module in another program or service program. That
second program or service program must be added to debug mode before the
module in the second program can be debugged.

When debug mode ends, all programs are removed from debug mode.

How Observabi

© Copyright IBM Corp. 1995

lity and Optimization Affect Debugging

Whether a module is observable and whether it is fully optimized affect the ability to
debug it. :

Module observability refers to data that can be stored with a module that allows it
to be changed without being compiled again. Optimization is a process where the
system looks for processing shortcuts that reduce the amount of system resources
necessary to produce the same output.

9-1

Observability

Module observability consists of two types of data:

Debug Data Represented by the *DBGDTA value. This data is necessary
to allow a module to be debugged.

Creation Data Represented by the *CRTDTA value. This data is necessary
to translate the code to machine instructions. The module
must have this data for you to change the module optimiza-
tion level.

Once a module is compiled, you can only remove this data. Using the Change
Module (CHGMOD) command, you can remove either type of data from the
module, or remove both types. Removing all observability reduces the module to
its minimum size (with compression). Once this data is removed, you cannot
change the module in any way unless you compile the module again and replace
the data. To compile it again, you must have authority to the source code.

Optimization Levels

Generally, if a module has creation data, you can change the level at which the
source code is optimized to run on the system. Processing shortcuts are translated
into machine code, allowing the procedures in the module to run more efficiently.
The higher the optimization ievei, the more efficientiy the procedures in the moduie
run.

However, with more optimization you cannot change variables and may not be able
to view the actual value of a variable during debugging. When you are debugging,
set the optimization level to 10 (*NONE). This provides the lowest level of perform-
ance for the procedures in the module but allows you to accurately display and
change variables. After you have completed your debugging, set the optimization
level to 30 (*FULL) or 40. This provides the highest level of performance for the
procedures in the module.

Debug Data Creation and Removali

Module Views

Debug data is stored with each module and is generated when a module is
created. To debug a procedure in a module that has been created without debug
data, you must re-create the module with debug data. Then rebind the module to
the ILE program or service program. You do not have to recompile all the other
modules in the program or service program that already have debug data.

To remove debug data from a module, re-create the module without debug data or
use the Change Module (CHGMOD) command.

The levels of debug data available may vary for each module in an ILE program or
service program. The modules are compiled separately and could be produced
with different compilers and options. These debug data levels determine which
views are produced by the compiler and which views are displayed by the source
debugger. Possible values are:

*NONE No debug views are produced.

9-2 AS/400 ILE Concepts V3R6

*STMT No source is displayed by the debugger, but breakpoints can
be added using procedure names and statement numbers
found on the compiler listing. The amount of debug data
stored with this view is the minimum amount of data neces-
sary for debugging.

*SOURCE The source debugger displays source if the source files used
to compile the module are still present on the system.

*LIST The list view is produced and stored with the module. This
allows the source debugger to display source even if the
source files used to create the module are not present on the
system. This view can be useful as a backup copy-if the
program will be changed. However, the amount of debug
data may be quite large, especially if other files are
expanded into the listing. The compiler options used when
the modules were created determine whether the includes
are expanded. Files that can be expanded include DDS files
and include files (such as ILE C/400 includes, ILE RPG/400
/COPY files, and ILE COBOL/400 COPY files).

*ALL All debug views are produced. As for the list view, the
amount of debug data may be very large.

ILE RPG/400 also has a debug option *COPY that produces both a source view
and a copy view. The copy view is a debug view that has all the /COPY source
members included.

Debugging across Jobs

You may want to use a separate job to debug programs running in your job or a
batch job. This is very useful when you want to observe the function of a program
without the interference of debugger panels. For example, the panels or windows
that an application displays may overlay or be overlaid by the debugger panels
during stepping or at breakpoints. You can avoid this problem by starting a service
job and starting the debugger in a different job from the one that is being
debugged. For information on this, see the appendix on testing in the CL Program-
ming book.

Unmonitored Exceptions

When an unmonitored exception occurs, the program that is running issues a func-
tion check and sends a message to the job log. If you are in debug mode and the
modules of the program were created with debug data, the source debugger shows
the Display Module Source display. The program is added to debug mode if nec-
essary. The appropriate module is shown on the display with the affected line high-
lighted. You can then debug the program.

National Language Support Restriction for Debugging
If either of the following conditions exist:

» The coded character set identifier (CCSID) of the debug job is 290, 930, or
5026 (Japan Katakana)

* The code page of the device description used for debugging is 290, 930, or
5026 (Japan Katakana)

Chapter 9. Debugging Considerations 9-3

debug commands, functions, and hexadecimal literals should be entered in upper-
case. For example:

BREAK 16 WHEN var=X'AlB2'
EVAL var:X

The above restriction for Japan Katakana code pages does not apply when using
identifier names in debug commands (for example, EVAL). However, when debug-
ging ILE RPG/400, ILE COBOL/400, or ILE CL modules, identifier names in debug
commands are converted to uppercase by the source debugger and therefore may
be redisplayed differently.

9-4 AS/400 ILE Concepts V3R6

Chapter 10. Data Management Scoping

This chapter contains information on the data management resources that may be
used by an ILE program or service program. Before reading this chapter, you
should understand the data management scoping concepts described in “Data
Management Scoping Rules” on page 3-19.

Details for each resource type are left to each ILE HLL programmer’s guide.

Common Data Management Resources

© Copyright IBM Corp. 1995

This topic identifies all the data management resources that follow data manage-
ment scoping rules. Following each resource is a brief description of how to
specify the scoping. Additional details for each resource can be found in the publi-
cations referred to.

¢ Open file operations

Open file operations result in the creation of a temporary resource called an
open data path (ODP). The open function can be started by using HLL open
verbs, the Open Query File (OPNQRYF) command, or the Open Data Base File
(OPNDBF) command. The ODP is scoped to the activation group of the
program that opened the file. For OPM or ILE programs that run in the default
activation group, the ODP is scoped to the call-level number. To change the
scoping of HLL open verbs, an override may be used. You can specify scoping
by using the open scope (OPNSCOPE) parameter on all override commands,
the OPNDBF command, and the OPNQRYF command. For more information
about open file operations, see the Data Management book.

e Qverrides

Overrides are scoped to the call level, the activation group level, or the job
level. To specify override scoping, use the override scope (OVRSCOPE)
parameter on any override command. If explicit scoping is not specified, the
scope of the override depends on where the override is issued. If the override
is issued from the default activation group, it is scoped to the call level. If the
override is issued from any other activation group, it is scoped to the activation
group level. For more information about overrides, see the Data Management
book.

e Commitment definitions

Commitment definitions support scoping to the activation group level and
scoping to the job level. The scoping level is specified with the control scope
(CTLSCOPE) parameter on the Start Commitment Control (STRCMTCTL)
command. For more information about commitment definitions, see Backup
and Recovery — Advanced.

¢ Local SQL cursors

SQL programs may be created for ILE compiler products. The SQL cursors
used by an ILE program may be scoped to either the module or activation
group. You may specify the SQL cursor scoping through the end SQL
(ENDSQL) parameter on the Create SQL Program commands. For more infor-
mation about local SQL cursors, see the DB2 for 0S/400 SQL Programming
book.

10-1

Remote SQL connections

Remote connections used with SQL cursors are scoped to an activation group
implicitly as part of normal SQL processing. This allows multiple conversations
to exist among one source job and multiple target jobs or systems. For more
information about remote SQL connections, see the DB2 for 0S/400 SQL Pro-
gramming book.

e User interface manager

The Open Print Application (QUIOPNPA) and Open Display Application APls
support an application scope parameter. These APIs can be used to scope the
user interface manager (UIM) application to either an activation group or the
job. For more information about the user interface manager, see the System
API Reference.

* Open data links (open file management)

The Enable Link (QOLELINK) API enables a data link. If this API is used from
within an ILE activation group, the data link is scoped to that activation group.
If this API is used from within the default activation group, the data link is
scoped to the call level. For more information about open data links, see the
System API Reference.

e Common Programming Interface (CPl) Communications conversations

The activation group that starts a conversation owns that conversation. The
activation group that enables a link through the Enable Link (QOLELINK) API
owns the link. For more information about Common Programming Interface
(CPI) Communications conversations, see the System API Reference.

* Hierarchicai fiile system
The Open Stream File (OHFOPNSF) APl manages hierarchical file system
(HFS) files. The open information (OPENINFO) parameter on this API may be

used to control scoping to either the activation group or the job level. For more
information about the hierarchical file system, see the System API Reference.

Commitment Control Scoping
ILE introduces two changes for commitment control:

* Multiple, independent commitment definitions per job. Transactions can be
committed and rolled back independently of each other. Before ILE, only a
single commitment definition was allowed per job.

* If changes are pending when an activation group ends normally, the system
implicitly commits the changes. Before ILE, the system did not commit the
changes.

Commitment control allows you to define and process changes to resources, such
as database files or tables, as a single transaction. A transaction is a group of
individual changes to objects on the system that should appear to the user as a
single atomic change. Commitment control ensures that one of the following
occurs on the system:

» The entire group of individual changes occurs (a commit operation)
* None of the individual changes occur (a rollback operation)

10-2 AS/400 ILE Concepts V3R6

Various resources can be changed under commitment control using both OPM pro-
grams and ILE programs.

The Start Commitment Control (STRCMTCTL) command makes it possible for pro-
grams that run within a job to make changes under commitment control. When
commitment control is started by using the STRCMTCTL command, the system
creates a commitment definition. Each commitment definition is known only to
the job that issued the STRCMTCTL command. The commitment definition con-
tains information pertaining to the resources being changed under commitment
control within that job. The commitment control information in the commitment defi-
nition is maintained by the system as the commitment resources change. The
commitment definition is ended by using the End Commitment Control
(ENDCMTCTL) command. For more information about commitment control, see
Backup and Recovery — Advanced.

Commitment Definitions and Activation Groups

Multiple commitment definitions can be started and used by programs running
within a job. Each commitment definition for a job identifies a separate transaction
that has resources associated with it. These resources can be committed or rolled
back independently of all other commitment definitions started for the job.

Note: Only ILE programs can start commitment control for activation groups other
than the default activation group. Therefore, a job can use multiple commit-
ment definitions only if the job is running one or more ILE programs.

Original program model (OPM) programs run in the default activation group.
By default, OPM programs use the *DFTACTGRP commitment definition.
For OPM programs, you can use the *JOB commitment definition by speci-
fying CMTSCOPE(*JOB) on the STRCMTCTL command.

When you use the Start Commitment Control (STRCMTCTL) command, you specify
the scope for a commitment definition on the commitment scope (CMTSCOPE)
parameter. The scope for a commitment definition indicates which programs that
run within the job use that commitment definition. The default scope for a commit-
ment definition is to the activation group of the program issuing the STRCMTCTL
command. Only programs that run within that activation group will use that commit-
ment definition. Commitment definitions that are scoped to an activation group are
referred to as commitment definitions at the activation-group level. The commit-
ment definition started at the activation-group level for the OPM default activation
group is known as the default activation-group (*DFTACTGRP) commitment defi-
nition. Commitment definitions for many activation-group levels can be started and
used by programs that run within various activation groups for a job.

A commitment definition can also be scoped to the job. A commitment definition
with this scope value is referred to as the job-level or *JOB commitment definition.
Any program running in an activation group that does not have a commitment defi-
nition started at the activation-group level uses the job-level commitment definition.
This occurs if the job-level commitment definition has already been started by
another program for the job. Only a single job-level commitment definition can be
started for a job.

For a given activation group, only a single commitment definition can be used by

the programs that run within that activation group. Programs that run within an
activation group can use the commitment definition at either the job level or the

Chapter 10. Data Management Scoping 10-3

activation-group level. However, they cannot use both commitment definitions at
the same time.

When a program performs a commitment control operation, the program does not
directly indicate which commitment definition to use for the request. Instead, the
system determines which commitment definition to use based on which activation
group the requesting program is running in. This is possible because, at any point
in time, the programs that run within an activation group can use only a single com-
mitment definition.

Ending Commitment Control

Commitment control may be ended for either the job-level or activation-group-level
commitment definition by using the End Commitment Control (ENDCMTCTL)
command. The ENDCMTCTL command indicates to the system that the commit-
ment definition for the activation group of the program making the request is to be
ended. The ENDCMTCTL command ends one commitment definition for the job.
All other commitment definitions for the job remain unchanged.

If the commitment definition at the activation-group level is ended, programs
running within that activation group can no longer make changes under commit-
ment control. If the job-level commitment definition is started or already exists, any
new file open operations specifying commitment control use the job-level commit-
ment definition.

If the job-level commitment definition is ended, any program running within the job
that was using the job-level commitment definition can no longer make changes
under commitment control. If commitment control is started again with the
STRCMTCTL command, changes can be made.

Commitment Control during Activation Group End
When the following conditions exist at the same time:

* An activation group ends
e The job is not ending

the system automatically ends a commitment definition at an activation-group level.
If both of the following conditions exist:

* Uncommitted changes exist for a commitment definition at an activation-group
level »
* The activation group is ending normally

the system performs an implicit commit operation for the commitment definition
before it ends the commitment definition. Otherwise, if either of the following condi-
tions exist:

* The activation group is ending abnormally
* The system encountered errors when closing any files opened under commit-
ment control scoped to the activation group

an implicit rollback operation is performed for the commitment definition at the
activation-group level before being ended. Because the activation group ends
abnormally, the system updates the notify object with the last successful commit
operation. Commit and rollback are based on pending changes. If there are no
pending changes, there is no rollback, but the notify object is still updated. If the
activation group ends abnormally with pending changes, the system implicitly rolis

10-4 AS/400 ILE Concepts V3R6

back the changes. If the activation group ends normally with pending changes, the
system implicitly commits the changes.

An implicit commit operation or rollback operation is never performed during acti-
vation group end processing for the *JOB or *DFTACTGRP commitment definitions.
This is because the *JOB and *DFTACTGRP commitment definitions are never
ended because of an activation group ending. Instead, these commitment defi-
nitions are either explicitly ended by an ENDCMTCTL command or ended by the
system when the job ends.

The system automatically closes any files scoped to the activation group when the
activation group ends. This includes any database files scoped to the activation
group opened under commitment control. The close operation for any such file
occurs before any implicit commit operation that is performed for the commitment
definition at the activation-group level. Therefore, any records that reside in an I/O
buffer are first forced to the database before any implicit commit operation is per-
formed.

As part of the implicit commit operation or rollback operation, the system calls the
API commit and rollback exit program for each APl commitment resource. Each
APl commitment resource must be associated with the commitment definition at the
activation-group level. After the APl commit and rollback exit program is called, the
system automatically removes the APl commitment resource.

If the following conditions exist:

» An implicit rollback operation is performed for a commitment definition that is
being ended because an activation group is being ended
* A notify object is defined for the commitment definition

the notify object is updated.

Chapter 10. Data Management Scoping 10-5

10-6 AS/400 ILE Concepts V3R6

Chapter 11. |

LE Bindable Application Programming Interfaces

ILE bindable application programming interfaces (bindable APIs) are an important
part of ILE. In some cases they provide additional function beyond that provided by
a specific high-level language. For example, not all HLLs offer intrinsic means to
manipulate dynamic storage. In those cases, you can supplement an HLL function
by using particular bindable APIs. If your HLL provides the same function as a
particular bindable API, use the HLL-specific one.

Bindable APIs are HLL independent. This can be useful for mixed-language appli-
cations. For example, if you use only condition management bindable APIs with a
mixed-language application, you will have uniform condition handling semantics for
that application. This makes condition management more consistent than when
using multiple HLL-specific condition handlers.

The bindable APIs provide a wide range of function including:

Activation group and control flow management
Condition management

Date and time manipulation

Dynamic screen management

Math functions

Message handling

Program or procedure call management

and operational descriptor access

Storage management

For reference information on the ILE bindable APIs, see the System API Reference.

ILE Bindable APIs Available

© Copyright IBM Corp. 1995

Most bindable APIs are available to any HLL that ILE supports. Naming con-
ventions of the bindable APIs are as follows:

¢ Bindable APIs with names beginning with CEE are based on the SAA Lan-
guage Environment* specifications. These APIs are intended to be consistent
across the IBM SAA systems. For more information about the SAA Language
Environment, see the SAA CPI Language Environment Reference.

* Bindable APIs with names beginning with CEE4 or CEES4 are specific to the
AS/400 system.

11-1

ILE provides the following bindable APIs:

Activation Group and Control Flow Bindable APls

Abnormal End (CEE4ABN)

Find a Control Boundary (CEE4FCB)

Register Activation Group Exit Procedure (CEE4RAGE)
Register Call Stack Entry Termination User Exit Procedure
(CEERTX)

Signal the Termination-Imminent Condition (CEETREC)
Unregister Call Stack Entry Termination User Exit Procedure
(CEEUTX)

Condition Management Bindable APIs

Construct a Condition Token (CEENCOD)

Decompose a Condition Token (CEEDCOD)

Handle a Condition (CEE4HC)

Move the Resume Cursor to a Return Point (CEEMRCR)
Register a User-Written Condition Handler (CEEHDLR)
Retrieve ILE Version and Platform ID (CEEGPID)

Return the Relative Invocation Number (CEE4RIN)
Signal a Condition (CEESGL)

Unregister a User Condition Handler (CEEHDLU)

Date and Time Bindable APIs

Calculate Day-of-Week from Lilian Date (CEEDYWK)
Convert Date to Lilian Format (CEEDAYS)

Convert Integers to Seconds (CEEISEC)

Convert Lilian Date to Character Format (CEEDATE)
Convert Seconds to Character Timestamp (CEEDATM)
Convert Seconds to Integers (CEESECI)

Convert Timestamp to Number of Seconds (CEESECS)
Get Current Greenwich Mean Time (CEEGMT)

Get Current Local Time (CEELOCT)

Get Offset from Universal Time Coordinated to Local Time
(CEEUTCO)

Get Universal Time Coordinated (CEEUTC)

Query Century (CEEQCEN)

Return Default Date and Time Strings for Country (CEEFMDT)
Return Default Date String for Country (CEEFMDA)
Return Default Time String for Country (CEEFMTM)

Set Century (CEESCEN)

Math Bindable APIs
The x in the name of each math bindable API refers to one of the fol-
lowing data types:

11-2 AS/400 ILE Concepts V3R6

- O O”

32-bit binary integer
32-bit single floating-point number
64-bit double floating-point number

32-bit single floating-complex number (both real and imaginary parts
are 32 bits long)

64-bit double floating-complex number (both real and imaginary
parts are 64 bits long)

Absolute Function (CEESxXABS)
Arccosine (CEESXACS)

Arcsine (CEESXASN)

Arctangent (CEESXATN)

Arctangent2 (CEESxAT2)

Conjugate of Complex (CEESxXCJG)
Cosine (CEESxCOS)

Cotangent (CEESXCTN)

Error Function and Its Complement (CEESXERX)
Exponential Base e (CEESXEXP)
Exponentiation (CEESxXPx)

Factorial (CEE4SIFAC)

Floating Complex Divide (CEESxDVD)
Floating Complex Multiply (CEESXMLT)
Gamma Function (CEESxGMA)
Hyperbolic Arctangent (CEESxATH)
Hyperbolic Cosine (CEESxCSH)
Hyperbolic Sine (CEESxSNH)
Hyperbolic Tangent (CEESXTNH)
Imaginary Part of Complex (CEESxIMG)
Log Gamma Function (CEESxLGM)
Logarithm Base 10 (CEESxLG1)
Logarithm Base 2 (CEESxLG2)
Logarithm Base e (CEESxLOG)
Modular Arithmetic (CEESxMOD)
Nearest Integer (CEESxXNIN)

Nearest Whole Number (CEESXNWN)
Positive Difference (CEESxDIM)

Sine (CEESXSIN)

Square Root (CEESxSQT)

Tangent (CEESXTAN)

Transfer of Sign (CEESxSGN)
Truncation (CEESXINT)

Additional math bindable API:
Basic Random Number Generation (CEERANO)
Message Handling Bindable APIs

Dispatch a Message (CEEMOUT)
Get a Message (CEEMGET)
Get, Format, and Dispatch a Message (CEEMSG)

Program or Procedure Call Bindable APls

Get String Information (CEEGSI)
Retrieve Operational Descriptor Information (CEEDOD)
Test for Omitted Argument (CEETSTA)

Source Debugger Bindable APIs

Allow a Program to Issue Debug Statements
(QteSubmitDebugCommand)

Enable a Session to Use the Source Debugger
(QteStartSourceDebug)

Map Positions from One View to Another (QteMapViewPosition)
Register a View of a Module (QteRegisterDebugView)

Chapter 11. ILE Bindable Application Programming Interfaces 11-3

Remove a View of a Module (QteRemoveDebugView)
Retrieve the Attributes of the Source Debug Session
(QteRetrieveDebugAttribute)

Retrieve the List of Modules and Views for a Program
(QteRetrieveModuleViews)

Retrieve the Position Where the Program Stopped
(QteRetrieveStoppedPosition)

Retrieve Source Text from the Specified View
(QteRetrieveViewText)

Set the Attributes of the Source Debug Session
(QteSetDebugAttribute)

Take a Job Out of Debug Mode (QteEndSourceDebug)

Storage Management Bindable APls

Create Heap (CEECRHP)

Define Heap Allocation Strategy (CEE4DAS)
Discard Heap (CEEDSHP)

Free Storage (CEEFRST)

Get Heap Storage (CEEGTST)

Mark Heap (CEEMKHP)

Reallocate Storage (CEECZST)

Release Heap (CEERLHP)

Dynamic Screen Manager Bindable APIs

The dynamic screen manager (DSM) bindable APls are a set of screen I/O inter-
faces that provide a dynamic way to create and manage display screens for the ILE
high-ievel languages.

The DSM APIs fall into the following functional groups:

* Low-level services

The low-level services APls provide a direct interface to the 5250 data stream
commands. The APIs are used to query and manipulate the state of the
display screen; to create, query, and manipulate input and command buffers
that interact with the display screen; and to define fields and write data to the
display screen.

e Window services

The window services APls are used to create, delete, move, and resize
windows; and to manage multiple windows concurrently during a session.

* Session services

The session services APIs provide a general paging interface that can be used
to create, query, and manipulate sessions; and to perform input and output
operations to sessions.

For more information about the DSM bindable APIs, see the System API
Reference.

11-4 AS/400 ILE Concepts V3R6

Appendix A.
UPDPGM, or

Output Listing from CRTPGM, CRTSRVPGM,
UPDSRVPGM Command

This appendix shows examples of binder listings and explains errors that could
occur as a result of using the binder language.

Binder Listing

Basic Listing

© Copyright IBM Corp. 1995

The binder listings for the Create Program (CRTPGM), Create Service Program
(CRTSRVPGM), Update Program (UPDPGM), and Update Service Program
(UPDSRVPGM) commands are almost identical. This topic presents a binder
listing from the CRTSRVPGM command used to create the FINANCIAL service
program in “Binder Language Examples” on page 4-14.

Three types of listings can be specified on the detail (DETAIL) parameter of the
CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM commands:

*BASIC
*EXTENDED
*FULL

If you specify DETAIL(*BASIC) on the CRTPGM, CRTSRVPGM, UPDPGM, or
UPDSRVPGM command, the listing consists of the following:

e The values specified on the CRTPGM, CRTSRVPGM, UPDPGM, or
UPDSRVPGM command

e A brief summary table

e Data showing the length of time some pieces of the binding process took to
complete

Figure A-1, Figure A-2, and Figure A-3 on page A-2 show this information.

Create Service Program Page

Service program FINANCIAL

Library . o v o o e e e e e e e e e et MYLIB
Export *SRCFILE
Export source filet QSRVSRC

Library o o o e e e e e e e e e MYLIB
Export source member : *SRVPGM
Activation group oo .t *CALLER
Creation options *GEN *NODUPPROC *NODUPVAR ~ *DUPWARN
Listing detail *FULL
User profile *USER
Replace existing service program : *YES
Authority . . . o . . ot *LIBCRTAUT
Text « v v v v e s e e e e e e e e e e e
Module Library Module Library Module Library Module Library
MONEY MYLIB CALCS MYLIB
RATES MYLIB ACCTS MYLIB
Service Service Service Service
Program Library Program Library Program Library Program Library
*NONE
Binding Binding Binding Binding
Directory Library Directory Library Directory Library Directory Library
*NONE

Figure A-1. Values Specified on CRTSRVPGM Command

Create Service Program Page 3
Brief Summary Table
Program entry procedures : 0
Multiple strong definitions : @
Unresolved references: 0
#%%x* END OF BRIEF SUMMARY TABLE **x%*x
Figure A-2. Brief Summary Table
Create Service Program Page 23

Binding Statistics

Symbol collection CPU time: .018
Symbol resolution CPU timet .006
Binding directory resolution CPU time : .403
Binder language compilation CPU time: .040
Listing creation CPU time 1.622
Program/service program creation CPU time : .178
Total CPU time v v v v v v v v v s e e e e 2.761
Total elapsed time 11.522

x %% x% END OF BINDING STATISTICS **x%=%x

*CPC5D0B - Service program FINANCIAL created in library MYLIB.

*x %% %% END OF CREATE SERVICE PROGRAM LISTING * %% =%

Figure A-3. Binding Statistics

A-2 AS/400 ILE Concepts V3R6

Extended Listing

If you specify DETAIL(*EXTENDED) on the CRTPGM, CRTSRVPGM, UPDPGM, or
UPDSRVPGM command, the listing includes all the information provided by
DETAIL(*BASIC) plus an extended summary table. The extended summary table
shows the number of imports (references) that were resolved and the number of
exports (definitions) processed. For the CRTSRVPGM or UPDSRVPGM command,
the listing also shows the binder language used, the signatures generated, and
which imports (references) matched which exports (definitions). Figure A-4,

Figure A-5 on page A-4, and Figure A-6 on page A-5 show examples of the addi-

tional data.

Valid definitions:
Strong Lo oo s e e
Weak o000 oo
Resolved references :
To strong definitions :
To weak definitions:

Create Service Program

Extended Summary Table

*xx%%x END OF EXTENDED SUMMARY TABLE

Page 2

* k Kk Kk K

Figure A-4. Extended Summary Listing

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command A-3

Create Service Program

Binder Information Listing

Module : MONEY
Library L MYLIB
Bound *YES
Number Symbol Ref Identifier Type
00000001 Def main Proc
00000002 Def Amount Proc
00000003 Def Payment Proc
00000004 Ref 0000017F Q LE AG_prod_rc Data
00000005 Ref 0000017E Q LE AG_user_rc Data
00000006 Ref 000000AC _C_main Proc
00000007 Ref 00000180 Q LE leDefaultEh Proc
00000008 Ref 00000181 Q LE mhConversionkh Proc
00000009 Ref 00000125 _C_exception_router Proc
Module : RATES
Library, : MYLIB
Bound *YES
Number Symbol Ref Identifier Type
0000000A Def Term Proc
0000000B Def Rate Proc
0000000C Ref 0000017F Q LE AG_prod_rc Data
0000000D Ref 0000017E Q LE AG_user_rc Data
0000000E Ref 00000180 Q LE leDefaultEh Proc
0000000F Ref 00000181 Q LE mhConversionEh Proc
00000010 Ref 00000125 _C_exception_router Proc
Module : CALCS
Library MYLIB
Bound *YES
Number Symbol Ref Identifier Type
00000011 Def Calcl Proc
00000012 Def Calc2 Proc
00000013 Ref 0000017F Q LE AG_prod_rc Data
00000014 Ref 0000017E Q LE AG_user_rc Data
00000015 Ref 00000180 Q LE leDefaultEh Proc
00000016 Ref 00000181 Q LE mhConversionEh Proc
00000017 Ref 00000125 _C_exception_router Proc
Module : ACCTS
Library o .. L MYLIB
Bound L *YES
Number Symbol Ref Identifier Type
00000018 Def OpenAccount Proc
00000019 Def CloseAccount Proc
0000001A Ref 0000017F Q LE AG_prod_rc Data
0000001B Ref 0000017E Q LE AG_user_rc Data
0000001C Ref 00000180 Q LE leDefaultEh Proc
0000001D Ref 00000181 Q LE mhConversionEh Proc
0000001E Ref 00000125 _C_exception_router Proc

Scope
Module

SrvPgm
SrvPgm

Scope

SrvPgm
SrvPgm

Scope

Module
Module

Scope

SrvPgm
SrvPgm

Page

Export
Strong

Strong
Strong

Export

Strong
Strong

Export

Strong
Strong

Export

Strong
Strong

4

Key

Key

Key

Figure A-5 (Part 1 of 2). Binder Information Listing

A-4 AS/400 ILE Concepts V3R6

Service program : QC2SYS

Library2 *=LIBL

Bound oo *NO
Number Symbo1 Ref Identifier Type Scope Export Key
0000001F Def system Proc Strong

Service program : QLEAWI

Library *LIBL

Boundo *YES
Number Symbo1 Ref Identifier Type Scope Export Key
0000017E Def Q LE AG_user_rc Data Strong
0000017F Def Q LE AG_prod_rc Data Strong
00000180 Def Q LE leDefaultEh Proc Strong
00000181 Def Q LE mhConversionEh Proc Strong

Figure A-5 (Part 2 of 2). Binder Information Listing

Create Service Program Page 14
Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL('Term')
EXPORT SYMBOL('Rate')
EXPORT SYMBOL ('Amount ')
EXPORT SYMBOL('Payment')
EXPORT SYMBOL('OpenAccount')
EXPORT SYMBOL('CloseAccount')
ENDPGMEXP
**xkkkx%% Export signature: 00000000ADCEFEE088738A98DBA6GE723.
STRPGMEXP PGMLVL (*PRV)
EXPORT SYMBOL('Term')
EXPORT SYMBOL('Rate')
EXPORT SYMBOL('Amount')
EXPORT SYMBOL('Payment')
ENDPGMEXP .
*kxxxk%%% Export signature: 000000000000000000ADC8IDOIEOCEET .

x % x%x END OF BINDER LANGUAGE LISTING **%*x

Figure A-6. Binder Language Listing

Full Listing

If you specify DETAIL(*FULL) on the CRTPGM, CRTSRVPGM, UPDPGM, or
UPDSRVPGM command, the listing includes all the detail provided for
DETAIL(*EXTENDED) plus a cross-reference listing. Figure A-7 on page A-6
shows a partial example of the additional data provided.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command

A-5

Identifier

xlatewt

CToseAccount
CEECRHP
CEECZST
CEEDATE
CEEDATM
CEEDAYS
CEEDCOD
CEEDSHP
CEEDYWK
CEEFMDA
CEEFMDT
CEEFMTM
CEEFRST
CEEGMT
CEEGPID
CEEGTST
CELISEC
CEELOCT
CEEMGET
CEEMKHP
CEEMOUT
CEEMRCR
CEEMSG
CEENCOD
CEEQCEN
CEERLHP
CEESCEN
CEESECI
CEESECS
CEESGL
CEETREC
CEEUTC
CEEUTCO
CEE4ABN
CEE4CpyDvfb
CEE4CpyIofb
CEE4Cpy0fb
CEE4DAS
CEEAFCB
CEE4HC
CEE4RAGE
CEE4RIN
OpenAccount
Payment

Q LE TeBdyCh
Q LE 1eBdyEpilog
Q LE leDefaultEh

Q LE mhConversionEh
Q LE AG_prod_rc

Q LE AG_user_rc

Q LE Hd1rRouterEh

Q LE RtxRouterCh

Rate
Term

Create Service Program

Cross-Reference Listing

Defs

000000DD
00000140
0000013E
0000013F
00000002
00000011
00000012
00000019
000001A0
0000019F
000001A9
000001B1
000001A8
00000187
000001A1
000001B3
000001AD
000001AF
000001AE
0000019E
000001B6
00000195
0000019D

nNNNN1IRA

UUUUULDY

00000184
' 00000183
000001A2
00000184
00000182
00000185
00000186
000001AC
000001A3
000001AB
00000182
000001AA
00000190
00000191
000001B5
000001B7
00000192
0000019A
00000199
00000198
000001A4
0000018A
00000197
00000188
00000196
00000018
00000003
00000188
00000189
00000180
00000015
00000181
00000016
0000017F
00000013
0000017E

0000018F
0000018E
00000008
0000000A

00000007

00000008

00000004
0000001A
00000005
00000014

0000000E
0000001C
0000000F
0000001D
0000000C

0000000D
0000001B

Type

*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*MODULE
*MODULE
*MODULE
*MODULE
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*MODULE
*MODULE
*SRVPGM
*SRVPGM
*SRVPGM

*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM
*SRVPGM

*MODULE
*MODULE

Library

*LIBL
*LIBL
*LIBL
*LIBL
MYLIB
MYLIB
MYLIB
MYLIB
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*=LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
*LIBL
MYLIB
MYLIB
*LIBL
*LIBL
*LIBL

*LIBL
*LIBL
*LIBL
*LIBL
*LIBL

MYLIB
MYLIB

Page 15

Object

QC2UTIL1
QC2UTIL2
QC2UTIL2
QC2UTIL2
MONEY
CALCS
CALCS
ACCTS
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI

N1 EALT
]

LEAWL

QLEAWT
QLEAWT
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAKI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
QLEAWI
ACCTS

MONEY

QLEAWI
QLEAWI
QLEAWI

QLEAWI
QLEAWI
QLEAWI
QLEAWT
QLEAWI

RATES
RATES

Figure A-7. Cross-Reference Listing

A-6 AS/400 ILE Concepts V3R6

Listing for Example Service Program
Figure A-3 on page A-2, Figure A-5 on page A-4, and Figure A-7 on page A-6
show some of the listing data generated when DETAIL(*FULL) was specified to
create the FINANCIAL service program in Figure 4-7 on page 4-19. The figures
show the binding statistics, the binder information listing, and the cross-reference
listing.

Binder Information Listing for Example Service Program
The binder information listing (Figure A-5 on page A-4) includes the following data
and column headings:

The library and name of the module or service program that was processed.

If the Bound field shows a value of *YES for a module object, the module is
marked to be bound by copy. If the Bound field shows a value of *YES for a
service program, the service program is bound by reference. If the Bound field
shows a value of *NO for either a module object or service program, that object
is not included in the bind. The reason is that the object did not provide an
export that satisfied an unresolved import.

Number

For each module or service program that was processed, a unique identifier
(ID) is associated with each export (definition) or import (reference).

Symbol

This column identifies the symbol name as an export (Def) or an import (Ref).
Ref

A number specified in this column (Ref) is the unique ID of the export (Def) that
satisfies the import request. For example, in Figure A-5 on page A-4 the
unique ID for the import 00000005 matches the unique ID for the export
0000017E.

Identifier

This is the name of the symbol that is exported or imported. The symbol name
imported for the unique ID 00000005 is Q LE AG_user_rc. The symbol name
exported for the unique ID 0000017E is also Q LE AG_user_rc.

Type

If the symbol name is a procedure, it is identified as Proc. If the symbol name
is a data item, it is identified as Data.

Scope

For modules, this column identifies whether an exported symbol name is
accessed at the module level or at the public interface to a service program. If
a program is being created, the exported symbol names can be accessed only
at the module level. If a service program is being created, the exported symbol
names can be accessed at the module level or the service program (SrvPgm)
level. If an exported symbol is a part of the public interface, the value in the
Scope column must be SrvPgm.

Export

This column identifies the strength of a data item exported from a module or
service program. The strength of an exported data item depends on the pro-
gramming language. The strength determines when enough is known about a

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command ~ A-7

data item to set its characteristics, such as its size. A strong export’s charac-
teristics are set at bind time.

— If one or more weak exports have the same name as a strong export, the
binder uses the characteristics of the strong export.

— If a weak export does not have the same name as a strong export, its char-
acteristics cannot be set until activation time. At activation time, if multiple
weak exports with the same name exist, the largest one is used unless an
already activated weak export with the same name has already set its char-
acteristics.

Weak exports can be exported outside a program object or service program to
be resolved at activation time. Strong exports cannot be exported outside a
program object. Strong exports can be exported outside a service program to
satisfy either of the following:

— Imports in a program that binds the service program by reference
— Imports in other service programs bound by reference to that program

o Key

This column contains additional information about any weak exports. Typically
this column is blank.

Cross-Reference Listing for Example Service Program

The cross-reference listing in Figure A-7 on page A-6 is another way of looking at
the data presented in the binder information. The cross-reference listing includes
the following column headings:

* |dentifier

The name of the export that was processed ddring symbol resolution.
¢ Defs

The unique ID associated with each export.
¢ Refs

A number in this column indicates the unique ID of the import (Ref) that was
resolved to this export (Def).

e Type
Identifies whether the export came from a *MODULE or a *SRVPGM object.
e Library
The library name as it was specified on the command or in the binding direc-
tory.
e Object
The name of the object that provided the export (Def).

Binding Statistics for Example Service Program

Figure A-3 on page A-2 shows a set of statistics for creating the service program
FINANCIAL. The statistics identify where the binder spent time when it was proc-
essing the create request. You have only indirect control over the data presented
in this section. Some amount of processing overhead cannot be measured. There-
fore, the value listed in the Total CPU time field is larger than the sum of the times
listed in the preceding fields.

A-8 AS/400 ILE Concepts V3R6

Binder Language Errors

While the system is processing the binder language during the creation of a service
program, an error might occur. If DETAIL(*EXTENDED) or DETAIL(*FULL) is spec-
ified on the Create Service Program (CRTSRVPGM) command, you can see the

errors in the spooled file.

The following information messages could occur:

Signature padded
Signature truncated

The following warning errors could occur:

Current export block limits interface

Duplicate export block

Duplicate symbol on previous export

Level checking cannot be disabled more than once, ignored
Multiple current export blocks not allowed, previous assumed

The following serious errors could occur:

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command

Current export block is empty

Export block not completed, end-of-file found before ENDPGMEXP
Export block not started, STRPGMEXP required

Export blocks cannot be nested, ENDPGMEXP missing

Exports must exist inside export blocks

Identical signatures for dissimilar export blocks, must change exports
Multiple wildcard matches

No current export block

No wildcard match

Previous export block is empty

Signature contains variant characters

SIGNATURE(*GEN) required with LVLCHK(*NO)

Signature syntax not valid

Symbol name required

Symbol not allowed as service program export

Symbol not defined

Syntax not valid

A-9

Signature Padded

Figure A-8 shows a binder language listing that contains this message.

Binder Language Listing
STRPGMEXP SIGNATURE('Short signature')
*#k%xx%%x Signature padded

EXPORT SYMBOL('Proc_2")
ENDPGMEXP

*xxkkkx%x Export signature: E2889699A340A289879581A3A4998540.

%%x+ END OF BINDER LANGUAGE LISTING * % * %%

Figure A-8. The Signature Provided Was Shorter than 16 Bytes, So It Is Padded

This is an information message.

Suggested Changes
No changes are required.

If you wish to avoid the message, make sure that the signature being provided is

exactly 16 bytes long.

A-10 AS/400 ILE Concepts V3R6

Signature Truncated
Figure A-9 shows a binder language listing that contains this message.

Binder Language Listing
STRPGMEXP SIGNATURE('This signature is very long')
*x%xx*xx% Signature truncated

EXPORT SYMBOL('Proc_2"')
ENDPGMEXP

**%kxkx%% Export signature: E38889A240A289879581A3A499854089.

%%*xx END OF BINDER LANGUAGE LISTING *x % %%

Figure A-9. Only the First 16 Bytes of Data Provided Are Used for the Signature

This is an information message.

Suggested Changes

No changes are required.

If you wish to avoid the message, make sure that the signature being provided is
exactly 16 bytes long.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command ~ A-11

Current Export Block Limits Interface
Figure A-10 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)
ENDPGMEXP
**xkx%%%x Export signature: 00000000000000000000000000000CD2.
STRPGMEXP PGMLVL (*PRV)
EXPORT SYMBOL(A)
EXPORT SYMBOL (B)
EXPORT SYMBOL(C)
ENDPGMEXP
*xx%k%x% Export signature: 0000000000000000000000000000CDE3.
**%%*k%%% Current export block Timits interface.

x%%x% % END OF BINDER LANGUAGE LISTING #* %% %%

Figure A-10. A PGMLVL(*PRV) Exported More Symbols than the PGMLVL(*CURRENT)
This is a warning error.

A PGMLVL(*PRV) export block has specified more symbols than the
PGMLVL(*CURRENT) export block.

If no other errors occurred, the service program is created.

If both of the following are true:

¢ PGMLVL(*PRV) had supported a procedure named C
e Under the new service program, procedure C is no longer supported

any ILE program or service program that called procedure C in this service program
gets an error at run time.

Suggested Changes
1. Make sure that the PGMLVL(*CURRENT) export block has more symbols to be
exported than a PGMLVL(*PRV) export block.

2. Run the CRTSRVPGM command again.

In this example, the EXPORT SYMBOL(C) was incorrectly added to the

IS
STRPGMEXP PGMLVL(*PRV) biock instead of to the PGMLVL(*CURRENT) biock.

A-12 AS/400 ILE Concepts V3R6

Duplicate Export Block

Figure A-11 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)
ENDPGMEXP
*xxxx%%% Export signature: 00000000000000000000000000000CD2.
STRPGMEXP PGMLVL (*PRV)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)
ENDPGMEXP
*xxxkkk% Export signature: 00000000000000000000000000000CD2.
***%xkx%% Duplicate export block.

* %%+ END OF BINDER LANGUAGE LISTING *=* =% %%

Figure A-11. Duplicate STRPGMEXP/ENDPGMEXP Blocks

This is a warning error.

More than one STRPGMEXP and ENDPGMEXP block exported all the same

symbols in the exact same order.

If no other errors occurred, the service program is created. The duplicated signa-

ture is included only once in the created service program.

Suggested Changes

1. Make one of the following changes:

* Make sure that the PGMLVL(*CURRENT) export block is correct. Update it

as appropriate.
¢ Remove the duplicate export block.
2. Run the CRTSRVPGM command again.

In this example, the STRPGMEXP command with PGMLVL(*CURRENT) specified

needs to have the following source line added after EXPORT SYMBOL(B):
EXPORT SYMBOL(C)

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command

A-13

Duplicate Symbol on Previous Export
Figure A-12 shows a binder language listing that contains a duplicate symbol error.

Binder Language Listing

STRPGMEXP ~ PGMLVL (*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)
EXPORT SYMBOL(A)
****%%%%% Duplicate symbol on previous export
EXPORT SYMBOL(C)
ENDPGMEXP
*xxxxx%x Export signature: 000000000000000000000000000CDED3.

*%%x %% END OF BINDER LANGUAGE LISTING * ** %«

Figure A-12. Duplicate Exported Symbols
This is a warning error.

A symbol to be exported from the service program was specified more than once in
a STRPGMEXP and ENDPGMEXP block.

If no other errors occurred, the service program is created. Only the first duplicate
symbol is exported from the service program. All duplicate symbols affect the sig-
nature that is generated.

Suggested Changes

1. Remove one of the duplicate source lines from the binder language source file.
2. Run the CRTSRVPGM command again.

In this example, remove the second EXPORT SYMBOL(A).

A-14 AS/400 ILE Concepts V3R6

Level Checking Cannot Be Disabled More than Once, Ignored
Figure A-13 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT) LVLCHK(*NO)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)
ENDPGMEXP
**xxk%xx% Export signature: 00000000000000000000000000000000.
STRPGMEXP PGMLVL (*PRV) LVLCHK(*NO)
*»*x*xx%** |evel checking cannot be disabled more than once, ignored
EXPORT SYMBOL(A)
ENDPGMEXP
**kxk%kkx% Export signature: 000000000000000000000000000000C1.

*% %+ END OF BINDER LANGUAGE LISTING ***x %%

Figure A-13. Multiple STRPGMEXP Commands Have LVLCHK(*NO) Specified
This is a warning error.
More than one STRPGMEXP blocks specified LVLCHK(*NO).

If no other errors occurred, the service program is created. The second and subse-
quent LVLCHK(*NO) are assumed to be LVLCHK(*YES).

Suggested Changes
1. Make sure that only one STRPGMEXP block has LVLCHK(*NO) specified.

2. Run the CRTSRVPGM command again.
In this example, the PGMLVL(*PRYV) export block is the only export block that has

LVLCHK(*NO) specified. The LVLCHK(*NO) value is removed from the
PGMLVL(*CURRENT) export block.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command A-15

Multiple Current Export Blocks Not Allowed, Previous Assumed
Figure A-14 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL (A)
EXPORT SYMBOL(B)
EXPORT SYMBOL(C)
ENDPGMEXP
*xxxxk%% Export signature: 0000000000000000000000000000CDE3.
STRPGMEXP ’
EXPORT SYMBOL(A)
*xxxxx%% Multiple 'current' export blocks not allowed, 'previous' assumed.
EXPORT SYMBOL (B)
ENDPGMEXP
*xxxxkkx Export signature: 00000000000000000000000000000CD2.

* %% %% END OF BINDER LANGUAGE LISTING ****=*

Figure A-14. More than One PGMLVL(*CURRENT) Value Specified
This is a warning error.
A value of PGMLVL(*CURRENT) was specified or was allowed to default to
PGMLVL(*CURRENT) on more than one STRPGMEXP command. The second

and subsequent export blocks with a value of PGMLVL(*CURRENT) are assumed
to be PGMLVL(*PRV).

If no other errors occurred, the service program is created.

Suggested Changes
1. Change the appropriate source text to STRPGMEXP PGMLVL(*PRV).

2. Run the CRTSRVPGM command again.

In this example, the second STRPGMEXP is the one to change.

A-16 AS/400 ILE Concepts V3R6

Current Export Block Is Empty

Figure A-15 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
ENDPGMEXP

*xxkkkkx Export signature: 00000000000000000000000000000000.
*%*ERROR Current export block is empty.

% %% END OF BINDER LANGUAGE LISTING *=x

Figure A-15. No Symbols to Be Exported from the STRPGMEXP PGMLVL(*CURRENT) Block

This is a serious error.

No symbols are identified to be exported from the *CURRENT export block.

The service program is not created.

Suggested Changes
1. Make one of the following changes:

e Add the symbol names to be exported.

* Remove the empty STRPGMEXP-ENDPGMEXP block, and make another
STRPGMEXP-ENDPGMEXP block as PGMLVL(*CURRENT).

2. Run the CRTSRVPGM command.

In this example, the following source line is added to the binder language source
file between the STRPGMEXP and ENDPGMEXP commands:

EXPORT SYMBOL(A)

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command A-17

Export Block Not Completed, End-of-File Found before ENDPGMEXP

Figure A-16 shows a binder language listing that contains this error.

Binder Language Listing
STRPGMEXP. PGMLVL (*CURRENT)

***ERROR Syntax not valid.
*%**ERROR Export block not completed, end-of-file found before ENDPGMEXP.

*%**x**+* END OF BINDER LANGUAGE LISTING ** %% %

Figure A-16. No ENDPGMEXP Command Found, but the End of the Source File Was Found
This is a serious error.
No ENDPGMEXP was found before the end of the file was reached.

The service program is not created.

Suggested Changes

1. Make one of the following changes:

¢ Add the ENDPGMEXP command in the appropriate place.
¢ Remove any STRPGMEXP command that does not have a matching
ENDPGMEXP command, and remove any symbol names to be exported.

2 Rin tha CRTQRVPGM command
= L 1\ 1 \A A CAl I .

TR LT T L 18 Wi VUG i

In this example, the following lines are added after the STRPGMEXP command:

EXPORT SYMBOL(A)
ENDPGMEXP

A-18 AS/400 ILE Concepts V3R6

Export Block Not Started, STRPGMEXP Required

Figure A-17 shows a binder language listing that contains this error.

Binder Language Listing
ENDPGMEXP

*»**ERROR Export block not started, STRPGMEXP required.
*%**ERROR No 'current' export block

* %% x* END OF BINDER LANGUAGE LISTING ****xx

Figure A-17. STRPGMEXP Command Is Missing
This is a serious error.
No STRPGMEXP command was found prior to finding an ENDPGMEXP command.

The service program is not created.

Suggested Changes

1. Make one of the following changes:

¢ Add the STRPGMEXP command.
e Remove any exported symbols and the ENDPGMEXP command.

2. Run the CRTSRVPGM command.
In this example, the following two source lines are added to the binder language
source file before the ENDPGMEXP command.

STRPGMEXP
EXPORT SYMBOL(A)

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command ~ A-19

Export Blocks Cannot Be Nested, ENDPGMEXP Missing

Figure A-18 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)

STRPGMEXP PGMLVL(*PRV)

***ERROR Export blocks cannot be nested, ENDPGMEXP missing.
EXPORT SYMBOL(A)

ENDPGMEXP

*xxkxx%% Export signature: 000000000000000000000000000000C1.

* %% x% END OF BINDER LANGUAGE LISTING *** %%

Figure A-18. ENDPGMEXP Command Is Missing
This is a serious error.

No ENDPGMEXP command was found prior to finding another STRPGMEXP
command.

The service program is not created.

Suggested Changes
1. Make one of the following changes:

* Add the ENDPGMEXP command prior to the next STRPGMEXP command.
* Remove the STRPGMEXP command and any symbol names to be
exported.

2. Run the CRTSRVPGM command.

In this example, an ENDPGMEXP command is added to the binder source file prior
to the second STRPGMEXP command.

A-20 AS/400 ILE Concepts V3R6

Exports Must Exist inside Export Blocks
Figure A-19 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)

ENDPGMEXP

*xxx%%%% Export signature: 00000000000000000000000000000CD2.
EXPORT SYMBOL(A)

*»**ERROR Exports must exist inside export blocks.

*%x %% END OF BINDER LANGUAGE LISTING **x**x

Figure A-19. Symbol Name to Be Exported Is outside the STRPGMEXP-ENDPGMEXP Block

This is a serious error.

A symbol to be exported is not defined within a STRPGMEXP-ENDPGMEXP block.

The service program is not created.

Suggested Changes

1. Make one of the following changes:

¢ Move the symbol to be exported. Put it within a
STRPGMEXP-ENDPGMEXP block.
¢ Remove the symbol.

2. Run the CRTSRVPGM command.

In this example, the source line in error is removed from the binder language
source file.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command ~ A-21

Identical Signatures
Exports

for Dissimilar Export Blocks, Must Change

This is a serious error.

Identical signatures have been generated from STRPGMEXP-ENDPGMEXP blocks
that exported different symbols. This error condition is highly unlikely to occur. For
any set of nontrivial symbols to be exported, this error should occur only once
every 3.4E28 tries.

The service program is not created.

Suggested Changes

1. Make one of the following changes:

Add an additional symbol to be exported from the PGMLVL(*CURRENT)
block.

The preferred method is to specify a symbol that is already exported. This
would cause a warning error of duplicate symbols but would help ensure
that a signature is unique. An alternative method is to add another symbol
to be exported that has not been exported.

Change the name of a symbol to be exported from a module, and make the
corresponding change to the binder language source file.

Specify a signature by using the SIGNATURE parameter

cul

Program Export (STRPGMEXP) command.

n the Start

2. Run the CRTSRVPGM command.

A-22 AS/400 ILE Concepts V3R6

|

Multiple Wildcard Matches

Figure A-20 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)

EXPORT ("A"<<<)

*%**ERROR Multiple matches of wildcard specification

EXPORT ("B"<<<)

ENDPGMEXP

x#*xxkxk% Export signature: 0000000000000000000000000000FFC2.

*%**%%x* END OF BINDER LANGUAGE LISTING

Figure A-20. Multiple Matches of Wildcard Specification
This is a serious error.
A wildcard specified for export matched more than one symbol available for export.

The service program is not created.

Suggested Changes
1. Specify a wildcard with more detail so that the desired matching export is the
only matching export.

2. Run the CRTSRVPGM command.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command A-23

No Current Export Block

Figure A-21 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*PRV)
EXPORT SYMBOL(A)

ENDPGMEXP
*xxxx%%% Export signature: 000000000000000000000000000000C1.

*#%*ERROR No 'current' export block

x %% x*% END OF BINDER LANGUAGE LISTING * %% %=

Figure A-21. No PGMLVL(*CURRENT) Export Block
This is a serious error.

No STRPGMEXP PGMLVL(*CURRENT) is found in the binder language source
file.

The service program is not created.

Suggested Changes
1. Make one of the following changes:

« Change a PGMLVL(*PRV) to PGMLVL(*CURRENT).
« Add a STRPGMEXP-ENDPGMEXP block that is the correct *CURRENT

export block.
2. Run the CRTSRVPGM command.

In this example, the PGMLVL(*PRV) is changed to PGMLVL(*CURRENT).

A-24 AS/400 ILE Concepts V3R6

No Wildcard Matches

Figure A-22 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)

EXPORT ("Z"<<<)

***ERROR No matches of wildcard specification

EXPORT ("B"<<<)

ENDPGMEXP

**kxkk%% Export signature: 0000000000000000000000000000FFC2.

* %% %% END OF BINDER LANGUAGE LISTING

Figure A-22. No Matches of Wildcard Specification
This is a serious error.
A wildcard specified for export did not match any symbols available for export.

The service program is not created.

Suggested Changes
1. Specify a wildcard that matches the symbol desired for export.

2. Run the CRTSRVPGM command.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command

A-25

Previous Export Block Is Empty

Figure A-23 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)
ENDPGMEXP
*xxkkkkx Export signature: 00000000000000000000000000000CD2.
STRPGMEXP PGMLVL (*PRV)
ENDPGMEXP
*xxxkkx% Export signature: 00000000000000000000000000000000.
*%**ERROR Previous export block is empty.

% % %% END OF BINDER LANGUAGE LISTING * % x %%

Figure A-23. No PGMLVL(*CURRENT) Export Block
This is a serious error.
A STRPGMEXP PGMLVL(*PRV) was found, and no symbols were specified.

The service program is not created.

Suggested Changes
1. Make one of the following changes:

¢ Add symbols to the STRPGMEXP-ENDPGMEXP block that is empty.
¢ Remove the STRPGMEXP-ENDPGMEXP block that is empty.

2. Run the CRTSRVPGM command.

In this example, the empty STRPGMEXP-ENDPGMEXP block is removed from the
binder language source file.

A-26 AS/400 ILE Concepts V3R6

Signature Contains Variant Characters
Figure A-24 shows a binder language listing that contains this error.

Binder Language Listing
STRPGMEXP SIGNATURE('\!cdefghijklmnop')
***ERROR Signature contains variant characters

EXPORT SYMBOL('Proc_2"')
ENDPGMEXP

x#xkkxkx Export signature: E05A8384858687888991929394959697.

* %% %% END OF BINDER LANGUAGE LISTING *=***=x

Figure A-24. Signature Contains Variant Characters
This is a serious error.

The signature contains characters that are not in all coded character set identifiers
(CCSIDs).

The service program is not created.

Suggested Changes

1. Remove the variant characters.
2. Run the CRTSRVPGM program.

In this specific case, it is the \! that needs to be removed.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command ~ A-27

SIGNATURE(*GEN) Required with LVLCHK(*NO)

Figure A-25 shows a binder language listing that contains this error.

Binder Language Listing
STRPGMEXP SIGNATURE ('ABCDEFGHIJKLMNOP') LVLCHK(*NOQ)
EXPORT SYMBOL('Proc_2")
*%x%ERROR SIGNATURE (*GEN) required with LVLCHK(*NO)
ENDPGMEXP
**kkkkkkx Export signature: C1C2C3C4C5C6C7C8C9D1D2D3D4D5D6DT .

*%**x% END OF BINDER LANGUAGE LISTING * % x* %

Figure A-25. If LVLCHK(*NO) Is Specified, an Explicit Signature Is Not Valid
This is a serious error.
If LVLCHK(*NO) is specified, SIGNATURE(*GEN) is required.

The service program is not created.

Suggested Changes

1. Make one of the following changes:

¢ Specify SIGNATURE(*GEN)
¢ Specify LVLCHK(*YES)

2. Run the CRTSRVPGM command.

A-28 AS/400 ILE Concepts V3R6

Signature Syntax Not Valid

Figure A-26 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP SIGNATURE('"abcdefghijkl "')
***ERROR Signature syntax not valid
***ERROR Signature syntax not valid
*x*ERROR Syntax not valid.
***ERROR Syntax not valid.
EXPORT SYMBOL('Proc_2')
ENDPGMEXP

*% %% END OF BINDER LANGUAGE LISTING ** % %

Figure A-26. What Is Specified for the Signature Value Is Not Valid
This is a serious error.
The signature contains invalid characters.

The service program is not created.

Suggested Changes

1. Remove invalid characters from the signature value.
2. Run the CRTSRVPGM command.

In this case, remove the " characters from the signature field.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command ~ A-29

Symbol Name Required

Figure A-27 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL('')
***ERROR Symbol name required.
ENDPGMEXP
*x**%k%%% Export signature: 000000000000000000000000000000C1.

* % %%+ END OF BINDER LANGUAGE LISTING * %% x

Figure A-27. No Symbol to Be Exported
This is a serious error.
No symbol name was found to export from the service program.

The service program is not created.

1. Make one of the following changes:

¢ Remove the line in error from the binder language source file.
¢ Add a symbol name to be exported from the service program.

2. Run the CRTSRVPGM command.

In this example, the source line EXPORT SYMBOL(' ') is removed from the binder
language source file.

A-30 AS/400 ILE Concepts V3R6

Symbol Not Allowed as Service Program Export
Figure A-28 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL(A)

*#**ERROR Symbol not allowed as service program export.
EXPORT SYMBOL(D)

ENDPGMEXP

**xx*xkx% Export signature: 00000000000000000000000000000CD4.

%x* END OF BINDER LANGUAGE LISTING ***x=x

Figure A-28. Symbol Name Not Valid to Export from Service Program
This is a serious error.

The symbol to be exported from the service program was not exported from one of
the modules to be bound by copy. Typically the symbol specified to be exported
from the service program is actually a symbol that needs to be imported by the
service program.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
* Remove the symbol in error from the binder language source file.
¢ On the MODULE parameter of the CRTSRVPGM command, specify the
module that has the desired symbol to be exported.
* Add the symbol to one of the modules that will be bound by copy, and re-
create the module object.

2. Run the CRTSRVPGM command.

In this example, the source line of EXPORT SYMBOL(A) is removed from the
binder language source file.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command ~ A-31

Symbol Not Defined

Figure A-29 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(Q)
***ERROR Symbol not defined.
ENDPGMEXP
x*xkxkxx Export signature: 00000000000000000000000000000CES.

% %% % END OF BINDER LANGUAGE LISTING *** %%

Figure A-29. Symbol Not Found in the Modules That Are to Be Bound by Copy
This is a serious error.

The symbol to be exported from the service program could not be found in the
modules that are to be bound by copy.

The service program is not created.

Suggested Changes
1. Make one of the following changes:

¢ Remove the symbol that is not defined from the binder language source
file.

¢ On the MODULE parameter of the CRTSRVPGM command, specify the
module that has the desired symbol to be exported.

¢ Add the symbol to one of the modules that will be bound by copy, and re-
create the module object.

2. Run the CRTSRVPGM command.

In this example, the source line of EXPORT SYMBOL(Q) is removed from the
binder language source file.

A-32 AS/400 ILE Concepts V3R6

Syntax Not Valid

This is a serious error.
The statements in the source member are not valid binder language statements.

The service program is not created.

Suggested Changes

1. Correct the source member so it contains valid binder language statements.
2. Run the CRTSRVPGM command.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command ~ A-33

A-34 AS/400 ILE Concepts V3R6

Appendix B. Optimization Errors

In rare circumstances, an MCH3601 exception message may occur in programs
compiled with optimization level 30 (*FULL) or 40. This appendix explains one
example in which this message occurs. The same program does not receive an
MCH3601 exception message when compiled with optimization level 10 (*“NONE) or
20 (*BASIC). Whether the message in this example occurs depends on how your
ILE HLL compiler allocates storage for arrays. This example might never occur for
your language.

When you ask for optimization level 30 (*FULL) or 40, ILE attempts to improve per-
formance by calculating array index references outside of loops. When you refer to
an array in a loop, you are often accessing every element in order. Performance
can be improved by saving the last array element address from the previous loop
iteration. To accomplish this performance improvement, ILE calculates the first
array element address outside the loop and saves the value for use inside the loop.

Take the following example:

DCL ARR[1000] INTEGER;
DCL I INTEGER;

I = init_expression; /* Assume that init_expression evaluates
to -1 which is then assigned to I */

/* More statements */
WHILE (I < limit_expression)
I=1+1;
/* Some statements in the while loop */
ARR[I] = some_expression;
/* Other statements in the while loop */
END;

If a reference to ARR]init_expression] would have produced an incorrect array
index, this example can cause an MCH3601 exception. This is caused by ILE
attempting to calculate the first array element address prior to entering the WHILE
loop.

If you receive MCH3601 exceptions at optimization level 30 (*FULL) or 40, look for
the following situation:

1. You have a loop that increments a variable before it uses the variable as an
array element index.

2. The initial value of the index variable on entrance to the loop is negative.

3. A reference to the array using the initial value of the variable is not valid.

© Copyright IBM Corp. 1995 B-1

When these conditions exist, it may be possible to do the following so that opti-
mization level 30 (*FULL) or 40 can still be used:

1. Move the part of the program that increments the variable to the bottom of the
loop.

2. Change the references to the variables as needed.

The previous example would be changed as follows:

I = init_expression + 1;

WHILE (I < Timit_expression + 1)
ARR[I] = some_expression;
I=1+1;

END;

If this change is not possible, reduce the optimization level from 30 (*FULL) or 40
to 20 (*BASIC) or 10 (*NONE).

B-2 AS/400 ILE Concepts V3R6

Appendix C. CL Commands Used with ILE Objects

The following lists indicate which CL commands can be used with each ILE object.

CL Commands Used with Modules

CHGMOD
CRTCMOD
CRTCBLMOD
CRTCLMOD
CRTRPGMOD
DLTMOD
DSPMOD
RTVBNDSRC
WRKMOD

Change Module
Create C Module
Create COBOL Module
Create CL Module
Create RPG Module
Delete Module

Display Module
Retrieve Binder Source
Work with Module

CL Commands Used with Program Objects

CHGPGM
CRTBNDC
CRTBNDCBL
CRTBNDCL
CRTBNDRPG
CRTPGM
DLTPGM
DSPPGM
DSPPGMREF
UPDPGM
WRKPGM

Change Program

Create Bound C Program
Create Bound COBOL Program
Create Bound CL Program
Create Bound RPG Program
Create Program

Delete Program

Display Program

Display Program References
Update Program

Work with Program

CL Commands Used with Service Programs

CHGSRVPGM
CRTSRVPGM
DLTSRVPGM
DSPSRVPGM
UPDSRVPGM
WRKSRVPGM

Change Service Program
Create Service Program
Delete Service Program
Display Service Program
Update Service Program
Work with Service Program

CL Commands Used with Binding Directories

ADDBNDDIRE
CRTBNDDIR
DLTBNDDIR
DSPBNDDIR
RMVBNDDIRE
WRKBNDDIR
WRKBNDDIRE

© Copyright IBM Corp. 1995

Add Binding Directory Entry
Create Binding Directory

Delete Binding Directory

Display Binding Directory
Remove Binding Directory Entry
Work with Binding Directory
Work with Binding Directory Entry

CL Command Used with Structured Query Language

CRTSQLCI Create Structured Query Language ILE C/400 Object
CRTSQLCBLI Create Structured Query Language ILE COBOL/400 Object
CRTSQLRPGI Create Structured Query Language ILE RPG/400 Object

CL Commands Used with Source Debugger

DSPMODSRC Display Module Source
ENDDBG End Debug
STRDBG Start Debug

CL Commands Used to Edit the Binder Language Source File

STRPDM Start Programming Development Manager

STRSEU Start Source Entry Utility

The following nonrunnable commands can be entered into the binder language
source file:

ENDPGMEXP End Program Export

EXPORT Export

STRPGMEXP Start Program Export

C-2 AS/400 ILE Concepts V3R6

Glossary

activation. A processing step that prepares a program
to be run. Activation includes allocating and initializing
static storage for programs in a job and completing
some portions of binding. After activation, the programs
are ready to run.

activation group. A partioning of resources within a
job. An activation group consists of system resources
(storage for program or procedure variables, commit-
ment definitions, and open files) allocated to one or
more programs.

argument. [n a high-level language (HLL) procedure
call, an expression that represents a value that the
calling procedure passes to the called procedure.

atomic. (1) In SQL, a characteristic of database data
definition functions that allows the function to complete
or return to its original state if a power interruption or
abnormal end occurs. (2) In commitment control, a
characteristic that allows individual changes to objects
to appear as a single change.

automatic data. Data that is allocated with the same
value on entry and reentry into a procedure. Values of
the data on exiting from the procedure are not retained
for the next entry into the procedure. The scope of
automatic data is a procedure call within an activation
group. Contrast with external data and local data.

automatic storage. In OS/400 application program-
ming interfaces, an area that is created by the system
when a program is called or run. Each routine can
have either automatic storage or static storage. Within
automatic storage, variables are defined each time the
program is called or run. Contrast with static storage.

bind. To create a program, which can be run, by com-
bining one or more modules created by an Integrated
Language Environment (ILE) compiler. See also binder
and binding.

binder. The system component that creates a bound
program by packaging Integrated Language Environ-
ment (ILE) modules and resolving symbols passed
between those modules.

binder language. A small set of commands
(STRPGMEXP, EXPORT, and ENDPGMEXP) that
defines the external interface (signature) for a service
program. These commands are in a source file and
cannot be run alone.

binding. The process of creating a program by pack-

aging Integrated Language Environment (ILE) modules
and resolving symbols passed between those modules.

© Copyright IBM Corp. 1995

binding directory. A list of names of modules and
service programs that may be needed when creating an
ILE program or service program. A binding directory is
not a repository of the modules and service programs.
Instead, it allows them to be referred to by name and

type.

bound program. An AS/400 object that combines one
or more modules created by an Integrated Language
Environment (ILE) compiler.

breakpoint. A place in a program (specified by a
command or a condition) where the system stops the
processing of that program and gives control to the
display station user or to a specified program.

call. Adds a new entry on the call stack for the called
procedure or program and transfers control to the called
object.

call message queue. A message queue that exists for
each call stack entry within a job.

call stack. The ordered list of all programs or proce-
dures currently started for a job. The order is last in,
first out. The programs and procedures can be started
explicitly with the CALL instruction, or implicitly from
some other event.

call stack entry. A program or procedure in the call
stack. Each call stack entry has information about the
local, automatic variables for the procedure, and other
resources scoped to the call stack entry such as condi-
tion handlers and cancel handlers.

commit. To make all changes permanent that were
made to one or more database files since the last
commit or rollback operation, and to make the changed
records available to other users.

commitment control. A means of grouping database
file operations that allows the processing of a group of
database changes as a single unit through the Commit
command or the removal of a group of database
changes as a single unit through the Rollback
command.

commitment definition. Information used by the
system to maintain the commitment control environment
throughout a routing step and, in the case of a system
failure, throughout an initial program load (IPL). This
information is obtained from the Start Commitment
Control command, which establishes the commitment
control environment, and the file open information in a
routing step.

G-1

condition. In the Integrated Language Environment
(ILE) model, a system-independent representation of an
error condition within a high-level language. For the
0S/400 program, each ILE condition has a corre-
sponding exception message.

condition token. A 12-byte data structure, which is
consistent across multiple Systems Application Soft-
ware* (SAA) participating systems, that allows the appli-
cation programmer to associate the condition with the
underlying exception message.

control boundary. A call stack entry used as the point
to which control is transferred when an unmonitored
error occurs or a high-level language termination verb is
used.

debug. To detect, diagnose, and eliminate errors in
programs.

debug mode. A mode in which a program provides
detailed output about its activities to aid a user in
detecting and correcting errors in the program itself or
in the configuration of the program or system.

debugger. A tool used to detect and trace errors in
computer programs.

direct monitor handler. An exception handler that
allows the application programmer to directly declare an
avanntinn manonitar arniimaA limitad hinh _lavual lanAiia~a
CTALTCMPUULT HIIVIITWVE atvuliu birimcu Illyll ICvVCTH 1ail |yuayr;
source statements. For ILE C/400, this capability is
enabled through a #pragma statement.

dynamic program call. A call from one program or
procedure to another program (*PGM) at run time.
Control is transferred to the called program.

dynamic screen manager. A set of APIs for control-
ling screen interaction.

dynamic storage. In application programming inter-
faces, an area of storage that is allocated by the pro-
grammer when a program or procedure is running.
Contrast with automatic storage and static storage.

EPM. See Extended Program Model.

export. An external symbol defined in a module or
program that is available for use by other modules or
programs. See also external symbol. Contrast with
import.

Extended Program Model (EPM). The set of func-
tions for compiling source code and creating programs
on the AS/400 system in high-level languages that
define procedure calls.

external data. Data that is exported from one proce-

dure and imported by another procedure. Contrast with
internal data.

G-2 AS/400 ILE Concepts V3R6

external message queue. A message queue used by
all programs and procedures running within a job to
send and to receive messages outside a job, for
example, between an interactive job and the workstation
user.

external symbol. An item defined in a high-level lan-
guage program that represents such things as proce-
dures or variables. Resolving external symbols is the
means by which the binder connects modules to form a
bound program or a service program.

first-in first-out (FIFO). A queuing technique in which
the next request to be processed from a queue is the
request of highest priority that has been on the queue
for the longest time. Contrast with /ast-in first-out
(LIFO).

handle cursor. A pointer that keeps track of the
current exception handler. Contrast with resume cursor.

heap. An object that provides dynamic storage for a
procedure. The object is part of the activation group
and is deleted when the activation group is deleted.
See dynamic storage.

heap identifier. A number that identifies a heap within
its activation group.

ILE. See Integrated Language Environment.

import. A reference to an external symbol defined in
another module or program. Contrast with export.

instance-specific information. Data that contains the
reference key to the instance of the message associ-
ated with the condition token. If the message reference
key is zero, there is no associated message.

Integrated Language Environment (ILE). A set of
constructs and interfaces that provides a common run-
time environment and run-time bindable application pro-
gramming interfaces (APIs) for all ILE-conforming
high-level languages.

internal data. Data that is recognized only by the pro-
cedure or OPM program that defines it. Local data is
deleted when the procedure returns control to the
calling program or procedure. Contrast with external
data.

job. A unit of work separately run by a computer. In
ILE, a job is a collection of resources and data, and
consists of one or more activation groups. See also
activation group.

last-in first-out (LIFO). A queuing technique in which
the next item to be retrieved is the item most recently
placed on the queue. Contrast with first-in first-out
(FIFO).

LIFO. See last-in first-out (LIFO).

local data. Data that is recognized only by the proce-
dure that defines it. The scope of local data is that of
the enclosing activation group.

module. In the Integrated Language Environment (ILE)
model, the object that results from compiling source
code. A module cannot be run. To be run, a module
must be bound into a program object or service
program.

nested exception. An exception that occurs while
another exception is being handled.

observability. The property of an object, which is
derived from data stored with the object, that allows
source to be retrieved from the object, allows the object
to be re-created without being recompiled, and allows
the object to be symbolically debugged.

ODP. See open data path (ODP).

open data path (ODP). A control block created when
a file is opened. An ODP contains information about
merged file attributes and information returned by input
or output operations. The ODP only exists while the file
is open.

operational descriptor. Information about an
argument’s size, shape, and type, which is passed by
the system to the called procedure. This information is
useful when the called procedure cannot precisely antic-
ipate the form of the argument, for example, different
types of strings.

OPM. See original program model (OPM).

optimization level. A level of efficiency for processing
a program, determined by the application programmer.
When the code is optimized on the system, the system
uses processing shortcuts to reduce the amount of
system resources necessary to produce the same
output. The processing shortcuts are then translated by
the system into machine code, thus allowing the
program to run more efficiently.

optimize. To maximize the performance of compiled
code.

original program model (OPM). The set of functions
for compiling source code and creating high-level lan-
guage programs on the AS/400 system before the Inte-
grated Language Environment (ILE) model was
introduced.

parameter. (1) In the Integrated Language Environ-
ment, an identifier that defines the types of arguments
that are passed to a called procedure. (2) A value sup-

plied to a command or program that is used either as
input or to control the actions of the command or
program.

PEP. See program entry procedure.

percolate. In the Integrated Language Environment
(ILE) model, to decline to handle a condition. The
unchanged condition is passed on to the next condition
handler.

procedure. A set of self-contained high-level language
statements that performs a particular task and then
returns to the caller.

procedure call. A call made to a procedure within a
module in a bound program. See also static procedure
call and procedure pointer call. Contrast with program
call.

procedure pointer call. A high-level language call
mechanism for specifying the address of a procedure to
be called. The procedure pointer call provides a way to
call a procedure dynamically. For example, by manipu-
lating arrays or tables of procedure names or
addresses, the application programmer can dynamically
route a procedure call to different procedures. Contrast
with static procedure call.

program. In the Integrated Language Environment
(ILE) model, the runnable object that results from
binding modules together.

program call. A call made to an ILE program or to an
OPM program. See also dynamic program call. Con-
trast with procedure call.

program entry procedure (PEP). A procedure pro-
vided by the compiler that is the entry point for an ILE
program on a dynamic program call. Contrast with user
entry procedure.

promote. To convert an unhandled condition into a
new condition with a different meaning. The new condi-
tion is passed on to another condition handler.

public interface. The names of the exported proce-
dures and data items that can be accessed by other
Integrated Language Environment (ILE) objects.

resolved import. An import whose type and name
exactly match the type and name of an export.

resume cursor. A pointer that keeps track of the
current location at which the exception handler may
resume processing after handling an exception.

resume point. An instruction in a program where proc-
essing continues after handling an exception.

Glossary G-3

return. To remove the call stack entry and transfer
control back to the calling procedure or program in the
previous call stack entry.

roll back. To restore data changed by an application
program or user to the state at its last commitment
boundary.

SAA. See Systems Application Architecture (SAA).

scope. The extent to which the semantic effects of
language statements reach. The scope may be to the
job or to the activation group.

service program. A bound program that performs
utility functions that can be called by other bound pro-
grams. See also bound program.

signature. A value that identifies the interfaces sup-
ported by a service program. Signatures are based on
the exports and the sequence of the exports allowed
from a service program.

source debugger. A tool for debugging Integrated
Language Environment (ILE) programs by displaying a
representation of their source code.

static procedure caii. A high-level language (HLL)
call statement that specifies the name of an Integrated
Language Environment (ILE) procedure to be called.

i I A A~ it AA
The name of the procedure is resolved to its address

during binding. Contrast with procedure pointer call.

static storage. In OS/400 application programming
interfaces, an area that is created by the system when
a program is activated. Each routine can have either
automatic storage or static storage. Within static
storage, variables are defined. Contrast with automatic
storage.

static variables. Variables declared for a program
activation. There may be multiple copies of static vari-
ables for a program within a job, one copy for each acti-
vation group in which the program is activated.

G-4 AS/400 ILE Concepts V3R6

strong export. An export that allows only one defi-
nition of an external symbol to be used by the binder.
The first definition in the binder search is chosen, and
duplicate definitions are discarded.

symbol resolution. The process the binder uses to
match unresolved imports from the set of modules to be
bound by copy with the set of exports provided by the
specified modules and service programs.

Systems Application Architecture (SAA). An archi-
tecture defining a set of rules for designing a common
user interface, programming interface, application pro-
grams, and communications support for strategic oper-
ating systems such as the 0S/2, 0S/400, VM, and MVS
operating systems.

transaction. A group of individual changes to objects
on the system that should appear as a single atomic
change to the user.

translator. An OS/400 component that performs the
final step in a program or module compilation. In the
Integrated Language Environment (ILE) model, the
translator is called the optimizing translator.

UEP. See user entry procedure.

unresolved import. An import whose type and name
do not yet match the type and name of an export.

user entry procedure (UEP). The entry procedure,
written by an application programmer, that is the target
of the dynamic program call. This procedure gets
control from the program entry procedure (PEP). Con-
trast with program entry procedure.

weak export. An export that allows several definitions
for the same external symbol. Each weak export has
an associated key value, which is the size of the data
item. The binder chooses the weak export with the
largest key value. Contrast with strong export.

wildcard. A character or group of characters that can
be used to represent a string of zer or more characters.

Bibliography

For additional information about topics related to the ILE
environment on the AS/400 system, refer to the fol-
lowing IBM AS/400 publications:

e Backup and Recovery — Advanced, SC41-4305,

AS/400 database organization, including information
on how to create, describe, and update database
files on the system. This manual also describes
how to define files to the system using OS/400 data

provides information about planning a backup and
recovery strategy, the different types of media avail-
able to save and restore system data, as well as a
description of how to record changes made to data-
base files using journaling and how that information
can be used for system recovery. This manual
describes how to plan for and set up user auxiliary
storage pools (ASPs), mirrored protection, and
checksums along with other availability recovery
topics. It also describes how to install the system
again from backup.

CL Programming, SC41-4721, provides a wide-
ranging discussion of AS/400 programming topics,
including a general discussion of objects and
libraries, CL programming, controlling flow and com-
municating between programs, working with objects
in CL programs, and creating CL programs. Other
topics include predefined and impromptu messages
and message handling, defining and creating user-
defined commands and menus, application testing,
including debug mode, breakpoints, traces, and

display functions.

CL Reference, SC41-4722, provides a description of
the AS/400 control language (CL) and its OS/400
commands. (Non-OS/400 commands are described
in the respective licensed program publications.) It
also provides an overview of all the CL commands
for the AS/400 system, and it describes the syntax
rules needed to code them.

Communications Management, SC41-3406, pro-
vides information about work management in a
communications environment, communications
status, tracing and diagnosing communications
problems, error handling and recovery, perform-
ance, and specific line speed and subsystem
storage information.

Data Management, SC41-4710, provides informa-
tion about using files in application programs. This
manual includes information on the following topics:

— Fundamental structure and concepts of data
management support on the system.

— Overrides and file redirection (temporarily
making changes to files when an application
program is run).

— Copying files by using system commands to
copy data from one place to another.

— Tailoring a system using double-byte data.

e DB2 for OS/400 Database Programming,

SC41-4701, provides a detailed discussion of the

© Copyright IBM Corp. 1995

description specifications (DDS) keywords.

Distributed Data Management, SC41-4307, provides
information about remote file processing. It
describes how to define a remote file to 0S/400 dis-
tributed data management (DDM), how to create a
DDM file, what file utilities are supported through
DDM, and the requirements of OS/400 DDM as
related to other systems.

Experience RPG IV Multimedia Tutorial. This is an
interactive self-study program explaining the differ-
ences between RPG lll and RPG IV and how to
work within the new ILE environment. An accompa-
nying workbook provides additional exercises and
doubles as a reference upon completion of the tuto-
rial. ILE RPG/400 code examples are shipped with
the tutorial and run directly on the AS/400. Dial
1-800-IBM-CALL to order the tutorial.

ICF Programming, SC41-3442, provides information
needed to write application programs that use
AS/400 communications and the OS/400 inter-
system communications function (OS/400-ICF).
This guide also contains information on data
description specifications (DDS) keywords, system-
supplied formats, return codes, file transfer support,
and program examples.

ILE C/400 Programmer’s Guide, SC09-2069, pro-
vides information on how to develop applications
using the ILE C/400 language. It includes informa-
tion about creating, running, and debugging pro-
grams. It also includes programming considerations
for interlanguage program and procedure calls,
locales, exception handling, database files,
externally described files, and device files. Some
performance tips are also described. An appendix
includes information on migrating source code from
EPM C/400 or System C/400 to ILE C/400.

ILE C/400 Programmer’s Reference, SC09-2070,
provides information about how to write programs
that adhere to the Systems Application Architecture
C Level 2 definition and use ILE C/400 specific
functions such as record I/O. It also provides infor-
mation on ILE C/400 machine interface library func-
tions.

ILE C/400 Reference Summary, SX09-1304, pro-
vides quick reference information about ILE C/400
command syntax, elements of C, SAA C library
functions, ILE C/400 library extensions to SAA C,
and ILE C/400 machine interface library extensions.

H-1

* ILE COBOL/400 Programmer’s Guide, SC09-2072,

describes how to write, compile, bind, run, debug,
and maintain ILE COBOL/400 programs on the
AS/400 system. It provides programming informa-
tion on how to call other ILE COBOL/400 and
non-ILE COBOL/400 programs, share data with
other programs, use pointers, and handle
exceptions. It also describes how to perform
input/output operations on externally attached
devices, database files, display files, and ICF files.

ILE COBOL/400 Reference, SC09-2073, describes
the ILE COBOL/400 programming language. It pro-
vides information on the structure of the ILE
COBOL/400 programming language and on the
structure of an ILE COBOL/400 source program. It
also describes all Identification Division paragraphs,
Environment Division clauses, Data Division para-
graphs, Procedure Division statements, and
Compiler-Directing statements.

ILE RPG/400 Programmer’s Guide, SC09-2074, is a
guide for using the RPG IV programming language,
which is an implementation of ILE RPG/400 in the

Integrated Language Environment (ILE) on the
AS/400 system. It includes information on creating
and running programs, with considerations for pro-
cedure calls and interlanguage programming. The
guide also covers debugging and exception han-
dling and explains how to use AS/400 files and
devices in RPG programs. Appendixes include
information on migration to RPG IV and sample
compiler listings. It is intended for people with a
basic understanding of data processing concepts
and of the RPG language.

ILE RPG/400 Reference, SC09-2077, provides
information needed to write programs for the
AS/400 system using the RPG IV programming lan-
guage. This manual describes, position by position
and keyword by keyword, the valid entries for all
RPG specifications, and provides a detailed
description of all the operation codes and built-in
functions. This manual also contains information on
the RPG logic cycle, arrays and tables, editing func-
tions, and indicators.

Intrasystem Communications Programming,
SC41-3447, provides information about interactive
communications between two application programs
on the same AS/400 system. This guide describes
the communications operations that can be coded
into a program that uses intrasystem communi-
cations support to communicate with another
program. It also provides information on developing
intrasystem communications application programs
that use the OS/400 intersystem communications
function (OS/400-ICF).

Security — Basic, SC41-3301, explains why security
is necessary, defines major concepts, and provides

H-2 AS/400 ILE Concepts V3R6

information on planning, implementing, and moni-
toring basic security on the AS/400 system.

Security — Reference, SC41-4302, tells how system
security support can be used to protect the system
and the data from being used by people who do not
have the proper authorization, protect the data from
intentional or unintentional damage or destruction,
keep security information up-to-date, and set up
security on the system.

System API Reference, SC41-4801, provides infor-
mation for the experienced programmer on how to
use the application programming interfaces (APIs)
to such OS/400 functions as:

— Configuration

— Database files

— Dynamic Screen Manager

— Message handling

— Network management

— Security

— Source debugging

— Spooled files

— User interface

— User object

— User-defined communications

— Work management

— Working with software products
This book includes both original program model
(OPM) and Integrated Language Environment (ILE)
APIs. Some of the APIs provide an alternative to
the CL commands.

System Concepts, SC41-3021, provides a general
understanding of the concepts related to the overall
design and use of the AS/400 system and its oper-
ating system. This manual includes general infor-
mation about AS/400 features such as user
interface, object management, work management,
system management, data management, database,
communications, environments, and architecture.

Work Management, SC41-4306, provides informa-
tion about how to create and change a work man-
agement environment. Other topics include a
description of tuning the system, collecting perform-
ance data including information on record formats
and contents of the data being collected, working
with system values to control or change the overall
operation of the system, and a description of how to
gather data to determine who is using the system
and what resources are being used.

For more information about the SAA Language Environ-
ment, refer to the following publication:

e Systems Application Architecture* Common Pro-

gramming Interface Language Environment Refer-
ence, SC26-4970, introduces the concepts that form
the basis of the Language Environment component
of the SAA Common Programming Interface. The

manual describes the services that can be called by vices, date and time services, math routines,
both single- and mixed-language applications. message services, and storage services.
Included are descriptions of condition handling ser-

Bibliography H-3

H-4 AS/400 ILE Concepts V3R6

Index

Special Characters
_CEEA4ALC heap allocation strategy type 7-4

A
Abnormal End (CEE4ABN) bindable APl 8-5
ACTGRP (activation group) parameter
*CALLER value 5-4
activation group creation 3-5
program activation 3-2, 3-5
activation
description 2-12
dynamic program call 6-5
program 3-1
program activation 3-8
service program 3-8, 6-2
activation group
ACTGRP (activation group) parameter
*CALLER value 5-4
activation group creation 3-2
program activation 3-2, 3-5
benefits of resource scoping 1-3
bindable APIs (application programming
interfaces) 11-2
call stack example 3-2
commitment control
example 1-4
scoping 10-3
control boundary
activation group deletion 3-7
example 3-10
creation 3-4
data management scoping 3-20, 10-3
default 3-5
deletion 3-6
management 5-1
mixing COBOL with other languages 1-5
multiple applications running in same job 5-1
original program model (OPM) 3-5
reclaim resources 5-2, 5-4
resource isolation 3-3
resources 3-3
reuse 3-6
scoping 3-20, 10-3
service program 5-4 _
shared open data path (ODP) example 1-3
system-named 3-5, 3-7
user-named
deletion 3-7
description 3-4, 5-1

© Copyright IBM Corp. 1995

advanced concepts 3-1
ALWUPD parameter

on CRTPGM command 4-24
on CRTSRVPGM command 4-24

API (application programming interface)

Abnormal End (CEE4ABN) 8-5
activation group 11-2
CEE4ABN (Abnormal End) 8-5
CEE4DAS (Define Heap Allocation Strategy) 7-5
CEECRHP (Create Heap) 7-4,7-5
CEECZST (Reallocate Storage) 7-4
CEEDOD (Retrieve Operational Descriptor Informa-
tion) 6-7
CEEDSHP (Discard Heap) 7-2, 7-5
CEEFRST (Free Storage) 7-4
CEEGTST (Get Heap Storage) 7-4
CEEHDLR (Register User-Written Condition
Handler) 3-17, 8-1
CEEHDLU (Unregister User-Written Condition
Handler) 3-17
CEEMGET (Get Message) 8-9
CEEMKHP (Mark Heap) 7-2, 7-5
CEEMOUT (Dispatch Message) 8-9
CEEMRCR (Move Resume Cursor) 8-3
CEEMSG (Get, Format and Dispatch Message) 8-9
CEENCOD (Construct Condition Token) 8-6
CEERLHP (Release Heap) 7-2, 7-5
CEESGI (Get String Information) 6-7
CEESGL (Signal Condition)
condition token 8-6, 8-9
description 3-13
CEETSTA (Test for Omitted Argument) 6-5
Change Exception Message (QMHCHGEM) 8-3
condition management 11-2, 11-3
Construct Condition Token (CEENCOD) 8-6
control flow 11-2
Create Heap (CEECRHP) 7-4, 7-5
date 11-2
debugger 11-3
Define Heap Allocation Strategy (CEE4DAS) 7-5
Discard Heap (CEEDSHP) 7-2, 7-5
Dispatch Message (CEEMOUT) 8-9
dynamic screen manager (DSM) 11-4
error handling 11-3
exception management 11-2, 11-3
Free Storage (CEEFRST) 7-4
Get Heap Storage (CEEGTST) 7-4
Get Message (CEEMGET) 8-9
Get String Information (CEESGI) 6-7
Get, Format and Dispatch Message (CEEMSG) 8-9
HLL independence 11-1
list of 11-2—11-4

API (application programming interface) (continued)

Mark Heap (CEEMKHP) 7-2, 7-5
math 11-2
message handling 11-3
Move Resume Cursor (CEEMRCR) 8-3
naming conventions 11-1
original program model (OPM) and ILE 6-8
procedure call 11-3
program call 11-3
Promote Message (QMHPRMM) 8-4
QCAPCMD 5-4
QMHCHGEM (Change Exception Message) 8-3
QMHPRMM (Promote Message) 8-4
QMHSNDPM (Send Program Message) 3-13, 8-1
Reallocate Storage (CEECZST) 7-4
Register User-Written Condition Handler
(CEEHDLR) 3-17, 8-1
Release Heap (CEERLHP) 7-2, 7-5
Retrieve Operational Descriptor Information
(CEEDOD) 6-7
Send Program Message (QMHSNDPM) 3-13, 8-1
services 1-2
Signal Condition (CEESGL)
condition token 8-6, 8-9
description 3-13
source debugger 11-3

atnrana mananae mant 4 1_/1
SWiayc inariayciiicrit i o

supplementing HLL-specific run-time library 11-1

Test for Omitted Argument (CEETSTA) 6-5

time 11-2

Unregister User-Written Condition Handler
(CEEHDLU) 3-17

application

multiple
running in same job 5-1

application development tools 1-6
application programming interface (API)

Abnormal End (CEE4ABN) 8-5

activation group 11-2

CEE4ABN (Abnormal End) 8-5

CEEA4DAS (Define Heap Allocation Strategy) 7-5

CEECRHP (Create Heap) 7-4,7-5

CEECZST (Reallocate Storage) 7-4

CEEDOD (Retrieve Operational Descriptor Informa-
tion) 6-7

CEEDSHP (Discard Heap) 7-2, 7-5

CEEFRST (Free Storage) 7-4

CEEGTST (Get Heap Storage) 7-4

CEEHDLR (Register User-Written Condition
Handler) 3-17, 8-1

CEEHDLU (Unregister User-Written Condition
Handler) 3-17

CEEMGET (Get Message) 8-9

CEEMKHP (Mark Heap) 7-2, 7-5

CEEMOUT (Dispatch Message) 8-9

CEEMRCR (Move Resume Cursor) 8-3

X-2 AS/400 ILE Concepts V3R6

application programming interface (API) (continued)

CEEMSG (Get, Format and Dispatch Message) 8-9
CEENCOD (Construct Condition Token) 8-6
CEERLHP (Release Heap) 7-2, 7-5
CEESGI (Get String Information) 6-7
CEESGL (Signal Condition)
condition token 8-6, 8-9
description 3-13
CEETSTA (Test for Omitted Argument) 6-5
Change Exception Message (QMHCHGEM) 8-3
condition management 11-2, 11-3
Construct Condition Token (CEENCOD) 8-6
control flow 11-2
Create Heap (CEECRHP) 7-4, 7-5
date 11-2
debugger 11-3
Define Heap Allocation Strategy (CEE4DAS) 7-5
Discard Heap (CEEDSHP) 7-2, 7-5
Dispatch Message (CEEMOUT) 8-9
dynamic screen manager (DSM) 11-4
error handling 11-3
exception management 11-2, 11-3
Free Storage (CEEFRST) 7-4
Get Heap Storage (CEEGTST) 7-4
Get Message (CEEMGET) 8-9
Get String Information (CEESGI) 6-7
Get, Format and Dispatch Message (CEEMSG) 8-9
HLL independence 11-1
list of 11-2—11-4
Mark Heap (CEEMKHP) 7-2,7-5
math 11-2
message handling 11-3
Move Resume Cursor (CEEMRCR) 8-3
naming conventions 11-1
original program model (OPM) and ILE 6-8
procedure call 11-3
program call 11-3
Promote Message (QMHPRMM) 8-4
QCAPCMD 5-4
QMHCHGEM (Change Exception Message) 8-3
QMHPRMM (Promote Message) 8-4
QMHSNDPM (Send Program Message) 3-13, 8-1
Reallocate Storage (CEECZST) 7-4
Register User-Written Condition Handler
(CEEHDLR) 3-17, 8-1
Release Heap (CEERLHP) 7-2, 7-5
Retrieve Operational Descriptor Information
(CEEDOD) 6-7
Send Program Message (QMHSNDPM) 3-13, 8-1
services 1-2
Signal Condition (CEESGL)
condition token 8-6, 8-9
description 3-13
source debugger 11-3
storage management 11-4
supplementing HLL-specific run-time library 11-1

application programming interface (API) (continued)
Test for Omitted Argument (CEETSTA) 6-5
time 11-2
Unregister User-Written Condition Handler
(CEEHDLU) 3-17
argument
passing
in mixed-language applications 6-6
argument passing
between languages 6-6
by reference 6-4
by value directly 6-3
by value indirectly 6-3
omitted arguments 6-5
to procedures 6-3
to programs 6-6
automatic storage 7-1

B

basic listing A-1
benefit of ILE
binding 1-1
C environment 1-6
code optimization 1-6
coexistence with existing applications 1-3
common run-time services 1-2
future foundation 1-6
language interaction control 1-4
modularity 1-1
resource control 1-3
reusable components 1-2
source debugger 1-3
Bibliography H-1
bind
by copy 2-8, 4-3
by reference 2-8, 4-3
bindable API
services 1-2
bindable API (application programming interface)
Abnormal End (CEE4ABN) 8-5
activation group 11-2
CEE4ABN (Abnormal End) 8-5
CEEA4DAS (Define Heap Allocation Strategy) 7-5
CEECRHP (Create Heap) 7-4,7-5
CEECZST (Reallocate Storage) 7-4
CEEDOD (Retrieve Operational Descriptor Informa-
tion) 6-7
CEEDSHP (Discard Heap) 7-2, 7-5
CEEFRST (Free Storage) 7-4
CEEGTST (Get Heap Storage) 7-4
CEEHDLR (Register User-Written Condition
Handler) 3-17, 8-1
CEEHDLU (Unregister User-Written Condition
Handler) 3-17
CEEMGET (Get Message) 8-9

bindable API (application programming interface)
(continued)
CEEMKHP (Mark Heap) 7-2, 7-5
CEEMOUT (Dispatch Message) 8-9
CEEMRCR (Move Resume Cursor) 8-3
CEEMSG (Get, Format and Dispatch Message) 8-9
CEENCOD (Construct Condition Token) 8-6
CEERLHP (Release Heap) 7-2,7-5
CEESGI (Get String Information) 6-7
CEESGL (Signal Condition)
condition token 8-6, 8-9
description 3-13
CEETSTA (Test for Omitted Argument) 6-5
condition management 11-2, 11-3
Construct Condition Token (CEENCOD) 8-6
control flow 11-2
Create Heap (CEECRHP) 7-4, 7-5
date 11-2
debugger 11-3 .
Define Heap Allocation Strategy (CEE4DAS) 7-5
Discard Heap (CEEDSHP) 7-2, 7-5
Dispatch Message (CEEMOUT) 8-9
dynamic screen manager (DSM) 11-4
error handling 11-3
exception management 11-2, 11-3
Free Storage (CEEFRST) 7-4
Get Heap Storage (CEEGTST) 7-4
Get Message (CEEMGET) 8-9
Get String Information (CEESGI) 6-7
Get, Format and Dispatch Message (CEEMSG) 8-9
HLL independence 11-1
list of 11-2—11-4
Mark Heap (CEEMKHP) 7-2, 7-5
math 11-2
message handling 11-3
Move Resume Cursor (CEEMRCR) 8-3
naming conventions 11-1
original program model (OPM) and ILE 6-8
procedure call 11-3
program call 11-3
Reallocate Storage (CEECZST) 7-4
Register User-Written Condition Handler
(CEEHDLR) 3-17, 8-1
Release Heap (CEERLHP) 7-2, 7-5
Retrieve Operational Descriptor Information
(CEEDOD) 6-7
Signal Condition (CEESGL)
condition token 8-6, 8-9
description 3-13
source debugger 11-3
storage management 11-4
supplementing HLL-specific run-time library 11-1
Test for Omitted Argument (CEETSTA) 6-5
time 11-2
Unregister User-Written Condition Handler
(CEEHDLU) 3-17

index X-3

binder 2-8
binder information listing
service program example A-7
binder language
definition 4-11

ENDPGMEXP (End Program Export)
ENDPGMEXP (End Program Export)

command 4-12
error A-9
examples 4-14, 4-23
EXPORT 4-13
EXPORT (Export Symbol) 4-11

STRPGMEXP (Start Program Export)

LVLCHK parameter 4-12
PGMLVL parameter 4-12

SIGNATURE parameter 4-13
STRPGMEXP (Start Program Export)

command 4-12
binder listing

basic A-1

extended A-3

full A-5

service program example A-7
binding

hanafit Af I £ 1_1
MTHITHL Ul 1L [}

original program model (OPM)

binding directory
~ 5

CL (control language) commands C-1

definition 2-7
binding statistics
service program example A-8

BNDDIR parameter on UPDPGM command 4-24
BNDDIR parameter on UPDSRVPGM

command 4-24

BNDSRVPGM parameter on UPDPGM

command 4-24

BNDSRVPGM parameter on UPDSRVPGM

command 4-24

by reference, passing arguments 6-4
by value directly, passing arguments 6-3
by value indirectly, passing arguments 6-3

C

C environment 1-6
C signal
ILE C/400 3-13
call
procedure 2-10, 6-1
procedure pointer 6-1
program 2-10, 6-1
call message queue 3-12
call stack
activation group example 3-2
definition 6-1
example
dynamic program calls 6-1

X-4 AS/400 ILE Concepts V3R6

call stack (continued)
example (continued)
static procedure calls 6-1
call-level scoping 3-20
callable service
See bindable API (application programming inter-
face)
Case component of condition token 8-6
CEE4ABN (Abnormal End) bindable APl 8-5
CEE4DAS (Define Heap Allocation Strategy)
bindable APl 7-5
CEE9901 (generic failure) exception message 3-15
CEECRHP (Create Heap) bindable APl 7-4, 7-5
CEECZST (Reallocate Storage) bindable APl 7-4
CEEDOD (Retrieve Operational Descriptor Informa-
tion) bindable APl 6-7
CEEDSHP (Discard Heap) bindable APl 7-2, 7-5
CEEFRST (Free Storage) bindable APl 7-4
CEEGTST (Get Heap Storage) bindable APl 7-4
CEEHDLR (Register User-Written Condition Handler)
bindable API 3-17, 8-1
CEEHDLU (Unregister User-Written Condition
Handler) bindable API 3-17
CEEMGET (Get Message) bindable APl 8-9
CEEMKHDP (Mark Heap) bindable APl 7-2, 7.5
CEEMOUT (Dispatch Message) bindable APl 8-9
CEEMRCR (Move Resume Cursor) bindable
APl 8-3
CEEMSG (Get, Format and Dispatch Message)
bindable APl 8-9
CEENCOD (Construct Condition Token) bindable
APl 8-6
CEERLHP (Release Heap) bindable APl 7-2, 7-5
CEESGI (Get String Information) bindable APl 6-7
CEESGL (Signal Condition) bindable API
condition token 8-6, 8-9
description 3-13
CEETSTA (Test for Omitted Argument) bindable
APl 6-5
Change Exception Message (QMHCHGEM) API 8-3
Change Module (CHGMOD) command 9-2
CHGMOD (Change Module) command 9-2
CL (control language) command
CHGMOD (Change Module) 9-2
RCLACTGRP (Reclaim Activation Group) 5-4
RCLRSC (Reclaim Resources)
for ILE programs 5-4
for OPM programs 5-4
code optimization
errors B-1
levels 9-2
performance
compared to original program model (OPM) 1-6
levels 2-14
module observability 9-1

coexistence with existing applications 1-3 condition token (continued)

command, CL relationship to OS/400 message 8-8
CALL (dynamic program call) 6-5 Severity component 8-7
CHGMOD (Change Module) 9-2 testing 8-8
CRTPGM (Create Program) 4-1 Construct Condition Token (CEENCOD) bindable
CRTSRVPGM (Create Service Program) 4-1 APl 8-6
ENDCMTCTL (End Commitment Control) 10-3 control boundary
OPNDBF (Open Data Base File) 10-1 activation group
OPNQRYF (Open Query File) 10-1 example 3-10
RCLACTGRP (Reclaim Activation Group) 3-7 default activation group example 3-11
RCLRSC (Reclaim Resources) 5-2 definition 3-10
STRCMTCTL (Start Commitment Control) 10-1, function check at 8-4
10-3 unhandled exception at 8-4
STRDBG (Start Debug) 9-1 use 3-11
Update Program (UPDPGM) 4-23 Control component of condition token 8-7
Update Service Program (UPDSRVPGM) 4-23 control flow ;
command, CL (control language) bindable APIs (application programming
CHGMOD (Change Module) 9-2 interfaces) 11-2
RCLACTGRP (Reclaim Activation Group) 5-4 CPF9999 (function check) exception message 3-14
RCLRSC (Reclaim Resources) Create Heap (CEECRHP) bindable APl 7-4,7-5
for ILE programs 5-4 Create Program (CRTPGM) command

for OPM programs 5-4

commitment control

activation group 10-3

commit operation 10-2

commitment definition 10-3

ending 10-4

example 1-4

rollback operation 10-2

scope 10-2, 10-8

transaction 10-2
commitment definition 10-1, 10-3
Common Programming Interface (CPI) Communi-

cation, data management 10-2

ACTGRP (activation group) parameter
activation group creation 3-5
program activation 3-2, 3-5
ALWUPD (Allow Update) parameter 4-23, 4-24
BNDDIR parameter 4-3
compared to CRTSRVPGM (Create Service
Program) command 4-1
DETAIL parameter
*BASIC value A-1
*EXTENDED value A-3
*FULL value A-5
ENTMOD (entry module) parameter 4-8
MODULE parameter 4-3

component output listing A-1
reusable program creation 2-3
benefit of ILE 1-2 service program activation 3-9
condition Create Service Program (CRTSRVPGM) command

definition 3-19
management 8-1
bindable APIs (application programming inter-
faces) 11-2, 11-3
relationship to OS/400 message 8-8
Condition ID component of condition token 8-6
condition token
Case component 8-6
Condition ID component 8-6
Control component 8-7
definition 3-19, 8-6
Facility ID component 8-7
feedback code on call to bindable APl 8-9
layout 8-6
Message Number component 8-7
Message Severity component 8-7
Msg_No component 8-7
MsgSev component 8-7

ACTGRP (activation group) parameter
*CALLER value 5-4
program activation 3-2, 3-5
ALWUPD (Allow Update) parameter 4-24
BNDDIR parameter 4-3
compared to CRTPGM (Create Program)
command 4-1
DETAIL parameter
*BASIC value A-1
*EXTENDED value A-3
*FULL value A-5
EXPORT parameter 4-9, 4-10
MODULE parameter 4-3
output listing A-1
service program activation 3-9
SRCFILE (source file) parameter 4-10
SRCMBR (source member) parameter 4-10

Index X-5

creation of
debug data 9-2
module 4-26

program 4-1, 4-26
program activation 3-2
service program 4-26
cross-reference listing
service program example A-8
CRTPGM
BNDSRVPGM parameter 4-3
CRTPGM (Create Program) command
compared to CRTSRVPGM (Create Service
Program) command 4-1
DETAIL parameter
*BASIC value A-1
*EXTENDED value A-3
*FULL value A-5
ENTMOD (entry module) parameter 4-8
output listing A-1
program creation 2-3
CRTSRVPGM
BNDSRVPGM parameter 4-3
CRTSRVPGM (Create Service Program) command
ACTGRP (activation group) parameter
*CALLER value 5-4
compared to CRTPGM (Create Program)
command 4-1
DETAIL parameter
*BASIC value A-1
*EXTENDED value A-3
*FULL value A-5
EXPORT parameter 4-9, 4-10
output listing A-1
SRCFILE (source file) parameter 4-10
SRCMBR (source member) parameter 4-10
cursor
handle 8-1
resume 8-1

D

data compatibility 6-6

data links 10-2

data management scoping
activation group level 3-20
activation-group level 10-3
call level 3-20, 5-2
commitment definition 10-1
Common Programming Interface (CPI) Communi-

cation 10-2

hierarchical file system 10-2
job-level 3-21, 10-3

local SQL (Structured Query Language) cursor 10-1

open data link 10-2
open file management 10-2
open file operation 10-1

X-6 AS/400 ILE Concepts V3R6

data management scoping (continued)
override 10-1
remote SQL (Structured Query Language) con-
nection 10-2
resource 10-1
rules 3-19
SQL (Structured Query Language) cursors 10-1
user interface manager (UIM) 10-2
data sharing
original program model (OPM) 1-8
date
bindable APIs (application programming
interfaces) 11-2
debug data
creation 9-2
definition 2-2
removal 9-2
debug mode
addition of programs 9-1
definition 9-1
debugger
bindable APIs (application programming
interfaces) 11-3
CL (control language) commands C-2
considerations 9-1

consieiaunie

description 2-15
debuaging
across jobs 9-3
bindable APIs (application programming
interfaces) 11-3
CCSID 290 9-3
CCSID 65535 and device CHRID 290 9-3
CL (control language) commands C-2
error handling 9-3
ILE program 2-4
module view 9-2
national language support
restriction 9-3
observability 9-1
optimization 9-1
unmonitored exception 9-3
default activation group
control boundary example 3-11
original program model (OPM) and ILE
programs 3-5
default exception handling
compared to original program model (OPM) 3-14
default heap 7-2
default heap allocation strategy 7-4
Define Heap Allocation Strategy (CEE4DAS)
bindable APl 7-5
deletion
activation group - 3-6
direct monitor
exception handler type 3-16, 8-1

Discard Heap (CEEDSHP) bindable APl 7-2, 7-5
Dispatch Message (CEEMOUT) bindable APl 8-9
DSM (dynamic screen manager)
bindable APIs (application programming
interfaces) 11-4
dynamic binding
original program model (OPM) 1-8
dynamic program call
activation 6-5
CALL CL (control language) command 6-5
call stack 6-1
definition 2-10
examples 2-10
Extended Program Model (EPM) 6-5
original program model (OPM) 1-7, 6-5
program activation 3-2
service program activation 3-8
dynamic screen manager (DSM)
bindable APIs (application programming
interfaces) 11-4
dynamic storage 7-1

E

End Commitment Control (ENDCMTCTL)
command 10-3
End Program Export (ENDPGMEXP) command 4-12
End Program Export (ENDPGMEXP), binder lan-
guage 4-11
ENDCMTCTL (End Commitment Control)
command 10-3
ENDPGMEXP (End Program Export), binder lan-
guage 4-11
ENTMOD (entry module) parameter 4-8
entry point
compared to ILE program entry procedure
(PEP) 2-2
Extended Program Model (EPM) 1-8
original program model (OPM) 1-7
EPM (Extended Program Model) 1-8
error
binder language A-9
during optimization B-1
error handling
architecture 2-13, 3-12
bindable APIs (application programming
interfaces) 11-2, 11-3
debug mode 9-3
default action 3-14, 8-4
language specific 3-14
nested exception 8-5
priority example 3-17
recovery 3-14
resume point 3-14
error message
MCH3203 4-2

error message (continued)
MCH4439 4-2
Escape (*ESCAPE) exception message type 3-13
exception handler
priority example 3-17
types 3-16
exception handling
architecture 2-13, 3-12
bindable APIs (application programming
interfaces) 11-2, 11-3
debug mode 9-3
default action 3-14, 8-4
language specific 3-14
nested exception 8-5
priority example 3-17
recovery 3-14
resume point 3-14
exception management 8-1
exception message
C signal 3-13
CEE9901 (generic failure) 3-15
CPF9999 (function check) 3-14
debug mode 9-3
function check (CPF9999) 3-14
generic failure (CEE9901) 3-15
handling 3-14
ILE C/400 raise() function 3-13
0S/400 3-13
percolation 3-15
relationship of ILE conditions to 8-8
sending 3-13
types 3-13
unmonitored 9-3
exception message architecture
error handling 3-12
export
definition 2-2
order 4-3
strong A-7
weak A-7
EXPORT (Export Symbol) 4-13
EXPORT (Export Symbol), binder language 4-11
EXPORT parameter
service program signature 4-9
used with SRCFILE (source file) and SRCMBR
(source member) parameters 4-10
export symbol
wildcard character 4-13
Export Symbol (EXPORT), binder language 4-11
exports
strong 4-8
weak 4-8
extended listing A-3
Extended Program Model (EPM) 1-8
external message queue 3-12

Index X-7

F

Facility ID component of condition token 8-7
feedback code option

call to bindable APl 8-9
file system, data management 10-2
Free Storage (CEEFRST) bindable APl 7-4
full listing A-5
function check

(CPF9999) exception message 3-14

control boundary 8-4

exception message type 3-13

G

import
definition 2-2
procedure 2-4
resolved and unresolved 4-2
important parameters on UPDPGM and
UPDSRVPGM commands 4-24
interlanguage data compatibility 6-6

job

multiple applications running in same 5-1
job message queue 3-12
job-level scoping 3-21

generic failure (CEE9901) exception message 3-15
Get Heap Storage (CEEGTST) bindable APl 7-4 L
Get Message (CEEMGET) bindable APl 8-9 language

Get String Information (CEESGI) bindable APl 6-7

Get, Format and Dispatch Message (CEEMSG)
bindable API 8-9
Glossary G-1

lammalla aviuaaw
Hnaruic vuIsvi

definition 8-1

heap
P

allocation strategy
_CEE4ALC allocation strategy type 7-4
default 7-4
characteristics 7-1
default heap 7-2
definition 7-1
ILE C/400 heap support 7-3
single-heap support 7-3
user-created heap 7-2
history of ILE 1-6
HLL specific
error handling 3-14
exception handler 3-17, 8-1
exception handling 3-14

I
ILE
basic concepts 2-1
compared to
Extended Program Model (EPM) 1-10
original program model (OPM) 1-10, 2-1
definition 1-1
history 1-6
introduction 1-1
program structure 2-1
ILE condition handler
exception handler type 3-16, 8-1

X-8 AS/400 ILE Concepts V3R6

procedure-based
characteristics 1-9
language interaction
consistent error handling 3-15
control 1-4
data compatibility 6-6
language specific
error handling 3-14
exception handler 3-17, 8-1
exception handiing 3-14
level check parameter on STRPGMEXP
command 4-12
level number 5-2
listing, binder
basic A-1
extended A-3
full A-5
service program example A-7

M
Mark Heap (CEEMKHP) bindable APl 7-2, 7-5
math
bindable APIs (application programming
interfaces) 11-2
MCH3203 error message 4-2
MCH4439 error message 4-2
message
bindable API feedback code 8-9
exception types 3-13
queue 3-12
relationship of ILE conditions to 8-8
message handling
bindable APIs (application programming
interfaces) 11-3

Message Number (Msg_No) component of condition

token 8-7

message queue
job 3-12

Message Severity (MsgSev) component of condition

token 8-7
modularity
benefit of ILE 1-1
module object
CL (control language) commands C-1
creation tips 4-26
description 2-2
MODULE parameter on UPDPGM command 4-24
MODULE parameter on UPDSRVPGM
command 4-24
module replaced by module
fewer exports 4-25
fewer imports 4-25
more exports 4-26
more imports 4-25
module replacement 4-23
module view
debugging 9-2
Move Resume Cursor (CEEMRCR) bindable
APl 83
multiple applications running in same job 5-1

N

national language support restriction for
debugging 9-3

nested exception 8-5

Notify (*NOTIFY) exception message type 3-13

(0

observability 9-1, 9-2
ODP (open data path)
scoping 3-19
omitted argument 6-5
Open Data Base File (OPNDBF) command 10-1
open data path (ODP)
scoping 3-19
open file operations 10-1
Open Query File (OPNQRYF) command 10-1
operational descriptor 6-6—=6-7
OPM (original program model)
activation group 3-5
binding 1-8
characteristics 1-8
compared to ILE 2-1, 2-3
data sharing 1-8
default exception handling 3-14
description 1-7
dynamic binding 1-8
dynamic program call 1-7, 6-5
entry point 1-7
exception handler types 3-16

OPM (original program model) (continued)

program entry point 1-7
OPNDBF (Open Data Base File) command 10-1
OPNQRYF (Open Query File) command 10-1
optimization

benefit of ILE 1-6

code

levels 2-14
module observability 9-1

errors B-1

levels 9-2
optimizing translator 1-6, 2-14
original program model (OPM)

activation group 3-5

binding 1-8

characteristics 1-8

compared to ILE 2-1, 2-3

data sharing 1-8

default exception handling 3-14

description 1-7

dynamic binding 1-8

dynamic program call 1-7, 6-5

entry point 1-7

exception handler types 3-16

program entry point 1-7
0S/400 exception message 3-13, 8-8
output listing

Create Program (CRTPGM) command A-1

Create Service Program (CRTSRVPGM)

Anrmrannad A_4
wvuilinailiu A=l

Update Program (UPDPGM) command A-1
Update Service Program (UPDSRVPGM)
command A-1
override, data management 10-1

P

passing arguments

between languages 6-6

by reference 6-4

by value directly 6-3

by value indirectly 6-3

in mixed-language applications 6-6

omitted arguments 6-5

to procedures 6-3

to programs 6-6
PEP (program entry procedure)

call stack example 6-1

definition 2-2

specifying with CRTPGM (Create Program)

command 4-8

percolation

exception message 3-15
performance

optimization

benefit of ILE 1-6
errors B-1

Index

X-9

performance (continued)
optimization (continued)
levels 2-14, 9-2
module observability 9-1
priority
exception handler example 3-17
procedure
definition 1-8, 2-2
passing arguments to 6-3
procedure call
bindable APIs (application programming
interfaces) 11-3
compared to program call 2-10, 6-1
Extended Program Model (EPM) 6-5
static
call stack 6-1
definition 2-10
examples 2-11
procedure pointer call 6-1, 6-3
procedure-based language
characteristics 1-9
program
access 4-8
activation 3-1
CL (control language) commands C-1
comparison of ILE and original program model
(OPM) 2-3
creation
examples 4-5, 4-7
process 4-1
tips 4-26
passing arguments to 6-6
program activation
activation 3-2
creation 3-2
dynamic program call 3-2
program call
bindable APIs (application programming
interfaces) 11-3
call stack 6-1
compared to procedure call 6-1
definition 2-10
examples 2-10
program entry point
compared to ILE program entry procedure
(PEP) 2-2
Extended Program Model (EPM) 1-8
original program model (OPM) 1-7
program entry procedure (PEP)
call stack example 6-1
definition 2-2
specifying with CRTPGM (Create Program)
command 4-8
program isolation in activation groups 3-3
program level parameter on STRPGMEXP
command 4-12

X-10 AS/400 ILE Concepts V3R6

program structure 2-1
program update 4-23
module replaced by module
fewer exports 4-25
fewer imports 4-25
more exports 4-26
more imports 4-25
Promote Message (QMHPRMM) APl 8-4

Q

QCAPCMD APl 5-4

QMHCHGEM (Change Exception Message) APl 8-3

QMHPRMM (Promote Message) APl 8-4

QMHSNDPM (Send Program Message) APl 3-13,
8-1

R

raise() function
ILE C/400 3-13
RCLACTGRP (Reclaim Activation Group)
command 3-7, 5-4
RCLRSC (Reclaim Resources) command 5-2
for ILE programs 5-4
for OPM programs 5-4
Reallocate Storage (CEECZST) bindable APl 7-4
command 3-7,5-4
Reclaim Resources (RCLRSC) command 5-2
for ILE programs 5-4
for OPM programs 5-4
recovery
exception handling 3-14
register exception handler 3-17
Register User-Written Condition Handler (CEEHDLR)
bindable APl 3-17, 8-1
Release Heap (CEERLHP) bindable APl 7-2, 7-5
removal of debug data 9-2
resolved import 4-2
resolving symbol
description 4-2
examples 4-5, 4-7
resource control 1-3
resource isolation in activation groups 3-3
resource, data management 10-1
restriction
debugging
national language support 9-3
resume cursor
definition 8-1
exception recovery 3-14
resume point
exception handling 3-14
Retrieve Binder Source (RTVBNDSRC)
command 4-9

Retrieve Operational Descriptor Information
(CEEDOD) bindable APl 6-7

reuse

activation group 3-6

components 1-2
rollback operation

commitment control 10-2
RPLLIB parameter on UPDPGM command 4-24
RPLLIB parameter on UPDSRVPGM command 4-24
run-time services 1-2

S

scope
commitment control 10-3
scoping, data management
activation group level 3-20
activation-group level 10-3
call level 3-20, 5-2
commitment definition 10-1
Common Programming Interface (CPl) Communi-
cation 10-2
hierarchical file system 10-2
job level 3-21
job-level 10-3
local SQL (Structured Query Language) cursor 10-1
open data link 10-2
open file management 10-2
open file operation 10-1

avarrida 101
Uvoiniuc U= 1

remote SQL (Structured Query Language) con-
nection 10-2
resource 10-1
rules 3-19
SQL (Structured Query Language) cursors 10-1
user interface manager (UIM) 10-2
Send Program Message (QMHSNDPM) APl 3-13,
8-1
sending
exception message 3-13
service program
activation 3-8, 6-2
binder listing example A-7
CL (control language) commands C-1
creation tips 4-26
definition 2-5
description 1-10
signature 4-9, 4-11
static procedure call 6-2
Severity component of condition token 8-7
shared open data path (ODP) example 1-3
Signal Condition (CEESGL) bindable API
condition token 8-6, 8-9
description 3-13
signature 4-11
EXPORT parameter 4-9

signature parameter on STRPGMEXP
command 4-13
source debugger 1-3
bindable APIs (application programming
interfaces) 11-3
CL (control language) commands C-2
considerations 9-1
description 2-15
SQL (Structured Query Language)
CL (control language) commands C-2
connections, data management 10-2
SRCFILE (source file) parameter 4-10
SRCMBR (source member) parameter 4-10
stack, call 6-1
Start Commitment Control (STRCMTCTL)
command 10-1, 10-3
Start Debug (STRDBG) command 9-1
Start Program Export (STRPGMEXP)
command 4-12
Start Program Export (STRPGMEXP), binder lan-
guage 4-11
static procedure call
call stack 6-1
definition 2-10
examples 2-11, 6-3
service program 6-2
service program activation 3-9
static storage 7-1
static variable 3-1, 5-1
Siatus (*STATUS) exception message iype 3-i3
storage management
automatic storage 7-1
bindable APIs 7-4
bindable APIs (application programming
interfaces) 11-4
dynamic storage 7-1
heap 7-1
static storage 5-2, 7-1
storage manager 7-1
STRCMTCTL (Start Commitment Control)
command 10-1, 10-3
STRDBG (Start Debug) command 9-1
strong export A-7
strong exports 4-8
STRPGMEXP (Start Program Export), binder lan-
guage 4-11
structure of ILE program 2-1
Structured Query Language (SQL)
CL (control language) commands C-2
connections, data management 10-2
support for original program model (OPM) and ILE
APIs 6-8
symbol name
wildcard character 4-13
symbol resolution
definition 4-2

Index X-11

symbol resolution (continued)
examples 4-5, 4-7
system-named activation group 3-5, 3-7

T

Test for Omitted Argument (CEETSTA) bindable
APl 6-5
testing condition token 8-8
time
bindable APIs (application programming
interfaces) 11-2
tip
module, program and service program
creation 4-26
transaction
commitment control 10-2
translator
code optimization 1-6, 2-14

U

UEP (user entry procedure)
call stack example 6-1
definition 2-2
unhandled exception
default action 3-14
unmonitored exception 9-3
Unregister User-Written Condition Handler
(CEEHDLU) bindable APl 3-17
unresoived import 4-2
Update Program (UPDPGM) command 4-23
Update Service Program (UPDSRVPGM)
command 4-23
UPDPGM command
BNDDIR parameter 4-24
BNDSRVPGM parameter 4-24
MODULE parameter 4-24
RPLLIB parameter 4-24
UPDSRVPGM command
BNDDIR parameter 4-24
BNDSRVPGM parameter 4-24
MODULE parameter 4-24
RPLLIB parameter 4-24
user entry procedure (UEP)
call stack example 6-1
definition 2-2
user interface manager (UIM), data
management 10-2
user-named activation group
deletion 3-7
description 3-4, 5-1

X-12 AS/400 ILE Concepts V3R6

\'}

variable
static 3-1, 5-1

W

weak export A-7
weak exports 4-8
wildcard character for export symbol 4-13

Reader Comments—We'd Like to Hear from You!

AS/400 Advanced Series
ILE Concepts
Version 3

Publication No. SC41-4606-00

Overall, how would you rate this manual?

Very
Satisfied

Satisfied

Dissatis-
fied

Very
Dissatis-
fied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

THANK YOU!
Please tell us how we can improve this manual:
May we contact you to discuss your responses? __ Yes __ No
Phone: () Fax: () Internet:
To return this form:
¢ Mail it
e Faxit

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192
e Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name

Address

Company or Organization

Phone No.

Reader Comments—We'd Like to Hear from You! o gl‘gni
SC41-4606-00 T === ‘
===7=0®
Fold and Tape Please do not staple Fold and Tape
NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES
[
BUSINESS REPLY MAIL ——
oot s]
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK E——
]
POSTAGE WILL BE PAID BY ADDRESSEE e ——
it]
ATTN DEPT 542 IDCLERK R
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-9986
IIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIII”IIIIIIII
""" Fold and Tape "~ Pleasedonotstaple = FoldandTape
Cuto

SC41-4606-00 Along

[

1n
-l
m
®

3

Printed in Denmark by Scanprint a-s
Certified Quality System DS/ISO 9002

(NI

	03908061 ====================.tif
	03908062.tif
	03908063.tif
	03908064.tif
	03908065.tif
	03908066.tif
	03908067.tif
	03908068.tif
	03908069.tif
	03908070.tif
	03908071.tif
	03908072.tif
	03908073.tif
	03908074.tif
	03908075.tif
	03908076.tif
	03908077.tif
	03908078.tif
	03908079.tif
	03908080.tif
	03908081.tif
	03908082.tif
	03908083.tif
	03908084.tif
	03908085.tif
	03908086.tif
	03908087.tif
	03908088.tif
	03908089.tif
	03908090.tif
	03908091.tif
	03908092.tif
	03908093.tif
	03908094.tif
	03908095.tif
	03908096.tif
	03908097.tif
	03908098.tif
	03908099.tif
	03908100.tif
	03908101.tif
	03908102.tif
	03908103.tif
	03908104.tif
	03908105.tif
	03908106.tif
	03908107.tif
	03908108.tif
	03908109.tif
	03908110.tif
	03908111.tif
	03908112.tif
	03908113.tif
	03908114.tif
	03908115.tif
	03908116.tif
	03908117.tif
	03908118.tif
	03908119.tif
	03908120.tif
	03908121.tif
	03908122.tif
	03908123.tif
	03908124.tif
	03908125.tif
	03908126.tif
	03908127.tif
	03908128.tif
	03908129.tif
	03908130.tif
	03908131.tif
	03908132.tif
	03908133.tif
	03908134.tif
	03908135.tif
	03908136.tif
	03908137.tif
	03908138.tif
	03908139.tif
	03908140.tif
	03908141.tif
	03908142.tif
	03908143.tif
	03908144.tif
	03908145.tif
	03908146.tif
	03908147.tif
	03908148.tif
	03908149.tif
	03908150.tif
	03908151.tif
	03908152.tif
	03908153.tif
	03908154.tif
	03908155.tif
	03908156.tif
	03908157.tif
	03908158.tif
	03908159.tif
	03908160.tif
	03908161.tif
	03908162.tif
	03908163.tif
	03908164.tif
	03908165.tif
	03908166.tif
	03908167.tif
	03908168.tif
	03908169.tif
	03908170.tif
	03908171.tif
	03908172.tif
	03908173.tif
	03908174.tif
	03908175.tif
	03908176.tif
	03908177.tif
	03908178.tif
	03908179.tif
	03908180.tif
	03908181.tif
	03908182.tif
	03908183.tif
	03908184.tif
	03908185.tif
	03908186.tif
	03908187.tif
	03908188.tif
	03908189.tif
	03908190.tif
	03908191.tif
	03908192.tif
	03908193.tif
	03908194.tif
	03908195.tif
	03908196.tif
	03908197.tif
	03908198.tif
	03908199.tif
	03908200.tif
	03908201.tif
	03908202.tif
	03908203.tif
	03908204.tif
	03908205.tif
	03908206.tif
	03908207.tif
	03908208.tif
	03908209.tif
	03908210.tif
	03908211.tif
	03908212.tif
	03908213.tif
	03908214.tif
	03908215.tif
	03908216.tif
	03908217.tif
	03908218.tif
	03908219.tif
	03908220.tif
	03908221.tif
	03908222.tif
	03908223.tif
	03908224.tif
	03908225.tif
	03908226.tif
	03908227.tif
	03908228.tif
	03908229.tif
	03908230.tif
	03908231.tif
	03908232.tif
	03908233.tif
	03908234.tif
	03908235.tif
	03908236.tif
	03908237.tif
	03908238.tif
	03908239.tif
	03908240.tif
	03908241.tif
	03908242.tif
	03908243.tif
	03908244.tif
	03908245.tif
	03908246.tif
	03908247.tif
	03908248.tif
	03908249.tif
	03908250.tif
	03908251.tif
	03908252.tif
	03908253.tif
	03908254.tif
	03908255.tif
	03908256.tif

